精英家教网 > 初中数学 > 题目详情

【题目】如图,梯形ABCD中,ABCD,AB=14,AD= 4 , CD=7.直线l经过A,D两点,且sinDAB=动点P在线段AB上从点A出发以每秒2个单位的速度向点B运动,同时动点Q从点B出发以每秒5个单位的速度沿B→C→D的方向向点D运动,过点PPM垂直于AB,与折线A→D→C相交于点M,当P,Q两点中有一点到达终点时,另一点也随之停止运动.设点P,Q运动的时间为t秒(t>0),MPQ的面积为S.

(1)求腰BC的长;

(2)QBC上运动时,求St的函数关系式;

(3)(2)的条件下,是否存在某一时刻t,使得△MPQ的面积S是梯形ABCD面积的?若存在,请求出t的值;若不存在,请说明理由;

(4)随着P,Q两点的运动,当点M在线段DC上运动时,设PM的延长线与直线l相交于点N,试探究:当t为何值时,△QMN为等腰三角形?

【答案】15;(2S=﹣5t2+14t(0t≤1)(3)不存在,理由见解析;(4t=t=

【解析】

试题(1)利用梯形性质确定点D的坐标,利用sin∠DAB=特殊三角函数值,得到△AOD为等腰直角三角形,求出梯形的高,然后利用勾股定理求出BC有长;

2)当0t≤1时,S=×2t×14﹣5t=﹣5t2+14t

3)在(2)的条件下,不存在某一时刻t,使得△MPQ的面积S是梯形ABCD面积的

4△QMN为等腰三角形的情形有两种,需要分类讨论,避免漏解.

试题解析:(15

2)当0t≤1时,S=×2t×14﹣5t=﹣5t2+14t

3)梯形ABCD的面积为42

﹣5t2+14t=42程无解,所以△MPQ的面积不能为梯形ABCD

4△QMN为等腰三角形,有两种情形:

如图4所示,点M在线段NM的右侧上

MQ=CD-DM-CQ=7-2t-4-5t-5=16-7tMN=DM=2t-4

MN=MQ,得16-7t=2t-4,解得t=

如图5所示,当QMN的左侧时,5t-5+2t-4-7=2t-4+4-4

解得:t=

故当t=t=时,△QMN为等腰三角形.

考点: 一次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数的图象分别与轴和轴交于两点,且与正比例函数的图象交于点.

1)求的值;

2)求正比例函数的表达式;

3)点是一次函数图象上的一点,且的面积是3,求点的坐标;

4)在轴上是否存在点,使的值最小?若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两商店出售同样的茶壶和茶杯,茶壶每只定价20元,茶杯每只定价5元,两家商店搞促销活动,甲店:买一只茶壶赠一只茶杯;乙店:按定价的9折优惠,某顾客需购买茶壶4只,茶杯若干只(不少于4只).

1)设购买茶杯数为(只),在甲店购买的付款为(元),在乙店购买的付款数为(元),分别写出在两家商店购物的付款数与茶杯数之间的关系式;

2)当购买多少只茶杯时,两家商店的花费相同?

3)当购买20只茶杯时,去哪家商店购物比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在国家的宏观调控下,某市的商品房成交价由今年3月份的5000/m2下降到5月份的4050/m2.

(1)4、5两月平均每月降价的百分率是多少?

(2)如果房价继续回落,按此降价的百分率,你预测到7月分该市的商品房成交均价是否会跌破3000/m2?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动.设运动时间为x秒,PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;

(2)求PBQ的面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,,以点为圆心,长为半径画弧,与射线相交于点,连接,过点作,垂足为

1)线段与图中现有的哪一条线段相等?你得出的结论是:

2)证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在△ABC中,AC=BC,点D在△ABC外部,且∠ACB+ADB=180°,连接ABCD.

(1)如图1,当∠ACB=90°时,则∠ADC=______°.

(2)如图2,当∠ACB=60°时,求证:DC平分∠ADB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系中,A(a0)B(0b),且|a2|(b2a)20,点Px轴上一动点,连接BP,在第一象限内作BCABBCAB

(1) 求点AB的坐标

(2) 如图1,连接CP.当CPBC时,作CDBP于点D,求线段CD的长度

(3) 如图2,在第一象限内作BQBPBQBP,连接PQ.设P(p0),直接写出SPCQ_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,AB=AC=10,sin∠BAC=,过点CCD∥AB,点E在边AC上,AE=CD,联结AD,BE的延长线与射线CD、射线AD分别交于点F、G.设CD=x,△CEF的面积为y.

(1)求证:∠ABE=∠CAD.

(2)如图,当点G在线段AD上时,求y关于x的函数解析式及定义域.

(3)若△DFG是直角三角形,求△CEF的面积.

查看答案和解析>>

同步练习册答案