【题目】如图,在ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.
(1)求证:四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
【答案】(1)见解析;(2)
【解析】
(1)先证明四边形是平行四边形,再根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形;
(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=3,DH=5,然后利用锐角三角函数的定义求解即可.
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC.
∴∠DAE=∠AEB.
∵AE是角平分线,
∴∠DAE=∠BAE.
∴∠BAE=∠AEB.
∴AB=BE.
同理AB=AF.
∴AF=BE.
∴四边形ABEF是平行四边形.
∵AB=BE,
∴四边形ABEF是菱形.
(2)解:作PH⊥AD于H,
∵四边形ABEF是菱形,∠ABC=60°,AB=4,
∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,
∴AP=AB=2,
∴PH=,AH=1,
∴DH=5,
∴tan∠ADP==.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中(如图),已知抛物线经过点,与轴交于点,,抛物线的顶点为点,对称轴与轴交于点.
(1)求抛物线的表达式及点的坐标;
(2)点是轴正半轴上的一点,如果,求点的坐标;
(3)在(2)的条件下,点是位于轴左侧抛物线上的一点,如果是以为直角边的直角三角形,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,从点A看一山坡上的电线杆PQ,观测点P的仰角是45°,向前走6m到达B点,测得顶端点P和杆底端点Q的仰角分别是60°和30°,则该电线杆PQ的高度( )
A. 6+2 B. 6+ C. 10﹣ D. 8+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知矩形的顶点,动点,同时从点出发,点沿射线方向以每秒个单位的速度运动,点沿线段方向以每秒个单位的速度运动,当点到达点时,点,同时停止运动,连接,设运动时间为(秒).
(1)求证;
(2)当点运动到点时,若双曲线的图象恰好过点,试求的值;
(3)连接,当为何值时,为等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.
(1)小明骑车在平路上的速度为 km/h,他在乙地休息了 h.
(2)分别求线段AB、EF所对应的函数关系式.
(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ACB中,∠C=90°,AC=3,BC=4,O是BC的中点,到点O的距离等于BC的所有点组成的图形记为G,图形G与AB交于点D.
(1)补全图形并求线段AD的长;
(2)点E是线段AC上的一点,当点E在什么位置时,直线ED与 图形G有且只有一个交点?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正比例函数y1=k1x的图象与反比例函数y2=(x>0)的图象相交于点A(,2),点B是反比例函数图象上一点,它的横坐标是3,连接OB,AB,则△AOB的面积是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阿里巴巴电商对贫困地区一种特色农产品进行网上销售,按原价每件300元出售,一个月可卖出100件,通过市场调查发现,售价每件降低10元,月销售件数增加20件
(1)已知该农产品的成本是每件200元,在保持月利润不变的情况下,尽快下手完毕,则售价应定为多少元?
(2)小红返校在附近线下超市也有该农产品销售,并且标价为每件300元,买五送一,在(1)的条件下,小红想要用最优惠的价格购买38件该农产品,应该选择在线上购买还是线下超市购买?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com