精英家教网 > 初中数学 > 题目详情

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是(

A.a>0
B.当x≥1时,y随x的增大而增大
C.c<0
D.当﹣1<x<3时,y>0

【答案】D
【解析】解:A、抛物线的开口方向向下,则a<0.故A选项错误;
B、根据图示知,当x≥1时,y随x的增大而减小.故此选项错误;
C、根据图示知,该抛物线与y轴交与正半轴,则c>0.故C选项错误;
D、根据图示知,抛物线的对称轴为x=1,抛物线与x轴的一交点的横坐标是﹣1,则抛物线与x轴的另一交点的横坐标是3,
所以当﹣1<x<3时,y>0.故此选项正确;
故选:D.
【考点精析】认真审题,首先需要了解二次函数图象以及系数a、b、c的关系(二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,四边形ABCD中,ADBC,AD=CD,E是对角线BD上一点,且EA=EC.

(1)求证:四边形ABCD是菱形;

(2)如果BE=BC,且CBE:BCE=2:3,求证:四边形ABCD是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合.展开后,折痕DE分别交AB、AC于点E、G.连接GF.下列结论:①∠AGD=112.5°;AD:AE=2;SAGD=SOGD④四边形AEFG是菱形;⑤BE=2 OG。其中正确结论的序号是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,O为坐标原点,二次函数y=x2+mx+2的图象与x轴的正半轴交于点A,与y轴的正半轴交交于点B,且OA:OB=1:2.设此二次函数图象的顶点为D.

(1)求这个二次函数的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;
(3)设(2)中平移后所得二次函数图象与y轴的交点为B1 , 顶点为D1 . 点P在平移后的二次函数图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.

(1)求证:∠AOC=∠BOD;
(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于x的方程:mx2﹣(3m﹣1)x+2m﹣2=0.
(1)求证:无论m取何值时,方程恒有实数根;
(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将数轴按如图所示从点A开始折出一等边△ABC,设A表示的数为x-3, B表示的数为2x5,C表示的数为5x,则x=_______△ABC向右滚动,则点2016与点_____重合.(填A.B.C)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知方程:①3x﹣1=2x+1,x﹣1=x中,解为x=2的是方程(  )

A. ②和③ B. ③和④ C. ③和④ D. ②和④

查看答案和解析>>

同步练习册答案