【题目】如图所示,在中,,,点从点出发,沿着以每秒的速度向点运动;同时点从点出发,沿以每秒的速度向点运动,设运动时间为.
(1)当为何值时,;
(2)当,求的值;
(3)能否与相似?若能,求出的长;若不能,请说明理由.
【答案】(1);(2);(3)或.
【解析】
(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.
(2)我们先看当=时能得出什么条件,由于这两个三角形在AC边上的高相等,那么他们的底边的比就应该是面积比,由此可得出CQ:AC=1:3,那么CQ=10cm,此时时间x正好是(1)的结果,那么此时PQ∥BC,由此可根据平行这个特殊条件,得出三角形APQ和ABC的面积比,然后再根据三角形PBQ的面积=三角形ABC的面积-三角形APQ的面积-三角形BQC的面积来得出三角形BPQ和三角形ABC的面积比.
(3)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ对应成比例以及AP和BC对应成比例两种情况来求x的值.
解:(1)由题意得,平行于,则,,,
∴,
∴.
(2)∵,
∴,,
∴时间用了秒,,
∵由(1)知,此时平行于,
∴,相似比为,
∴.
∴四边形与三角形面积比为,即,
又∵,即,
∴,
∴.
(3)假设两三角形可以相似.
情况1:当时,,即有解得,
经检验,是原分式方程的解.
此时,
情况2:当时,,即有解得,
经检验,是原分式方程的解.
此时.
综上所述,或.
科目:初中数学 来源: 题型:
【题目】某村计划在新农村改造过程中,拟筹资金2000元,计划在一块上、下底分别为10米、20米的梯形空地上种植花草(如图所示,),村委会想在地带与地带种植单价为10元的太阳花,当地带种满花后,已经花了500元,请你计算一下,若继续在地带种植同样的太阳花,资金是否够用?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】车辆转弯时,能否顺利通过直角弯道的标准是:车辆是否可以行使到和路的边界夹角是45°的位置(如图1中②的位置),例如,图2是某巷子的俯视图,巷子路面宽4m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE、CE的夹角都是45°时,连接EF,交CD于点G,若GF的长度至少能达到车身宽度,则车辆就能通过.
(1)试说明长8m,宽3m的消防车不能通过该直角转弯;
(2)为了能使长8m,宽3m的消防车通过该弯道,可以将转弯处改为圆弧(分别是以O为圆心,以OM和ON为半径的弧),具体方案如图3,其中OM⊥OM′,请你求出ON的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数y=y1y2,其中y1=+1,y2=x﹣1,请对该函数及其图象进行如下探究:
解析式探究:根据给定的条件,可以确定出该函数的解析式为:______.
函数图象探究:①根据解析式,完成下表:
x | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | … |
y | ﹣9 | ﹣ | m | n | ﹣1 | ﹣ | … |
m=______,n=_____.
②根据表中数据,在如图所示的平面直角坐标系中描点,并画出当x≤0时的函数图象;
结合画出的函数图象,解决问题:
①若A(x1,y1)、B(x2,y2)为图象上的两点,满足x1<x2;则y1_____y2(用<、=、>填空).
②写出关于x的方程y1y2=﹣x+3的近似解(精确到0.1).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2﹣2x﹣3与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,点D是该抛物线的顶点,连接AD,BD.
(1)直接写出点C、D的坐标;
(2)求△ABD的面积;
(3)点P是抛物线上的一动点,若△ABP的面积是△ABD面积的,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).
(1)画出△ABC关于y轴对称的△A1B1C1;
(2)画出△ABC绕O点顺时针旋转90°后的△A2B2C2;
(3)在(2)的条件下,求点C划过的路径长度(结果保留π).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有长为18米的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为Sm2.
(1)求S与x的函数关系式,并写出x的取值范围;
(2)如果要围成面积为24m2的花圃,AB的长是多少米?
(3)能围成面积比24m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】强哥驾驶小汽车(出租)匀速地从如皋火车站送客到南京绿口机场,全程为280km,设小汽车的行驶时间为t(单位:h),行驶速度为v(单位:km/h),且全程速度限定为不超过120km/h.
(1)求v关于t的函数解析式;
(2)强哥上午8点驾驶小汽车从如皋火车站出发.
①乘客需在当天10点48分至11点30分(含10点48分和11点30分)间到达南京绿口机场,求小汽车行驶速度v的范围;
②强哥能否在当天10点前到达绿口机场?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为( )
A.2B.C.4D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com