【题目】如图,将边长为的正方形放在平面直角坐标系第二象限,使边落在轴负半轴上,且点的坐标是.
(1)直线经过点,且与轴交于点,求四边形的面积;
(2)若直线经过点,且将正方形分成面积相等的两部分,求直线的解析式;
(3)若直线经过点且与直线平行.将(2)中直线沿着轴向上平移个单位,交轴于点,交直线于点,求的面积.
【答案】(1)10;(2);(3)27.
【解析】
(1)先求出E点的坐标,根据梯形的面积公式即可求出四边形AECD的面积;
(2)在DC上取一点G,使CG=AE=1,根据面积相等求出点G的坐标,设直线l的解析式是y=kx+b,把E、G的坐标代入即可求出解析式;
(3)根据直线l1经过点F(,0)且与直线y=-3x平行,知k=3,把F的坐标代入即可求出b的值即可得出直线11,再求出直线沿着轴向上平移个单位所得到的直线解析式,进一步求出M、N的坐标,利用三角形的面积公式即可求出△MNF的面积.
解:(1)当时,,∴.
∴E(-2,0).
由已知,得AD=AB=BC=DC=4,AB//DC,
∴四边形AECD是梯形.
∴.
(2)如图,在DC上取一点G,使CG=AE=1,
∴,
∴G点的坐标为(-4,4).
设直线L的解析式为,则
,解得:.
∴.
∴直线L的解析式是.
(3)∵直线经过点F()且与直线平行,设直线的解析式为,则,,解得.
∴直线:.
将(2)中直线L沿着轴向上平移1个单位,则所得直线的解析式是,
即:.
.
∴.
∴,解得:.
∴ .
∴=27.
故△NMF的面积是27.
科目:初中数学 来源: 题型:
【题目】如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点(端点除外),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,
(1)求证:△ABQ ≌ △CAP;
(2)∠CMQ的大小变化吗?若变化,则说明理由,若不变,则求出它的度数;
(3)连接PQ,当点P、Q运动多少秒时,△APQ是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某落地钟钟摆的摆长为米,来回摆动的最大夹角为,已知在钟摆的摆动过程中,摆锤离地面的最低高度为米,最大高度为米,则等于( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图的方格中,△OAB的顶点坐标分别为O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1与△OAB是关于点P为位似中心的位似图形.
(1)在图中标出位似中心P的位置,并写出点P的坐标及△O1A1B1与△OAB的相似比;
(2)以原点O为位似中心,在y轴的左侧画出△OAB的一个位似△OA2B2,使它与△OAB的位似比为2:1,并写出点B的对应点B2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为( )
A. (, ) B. (2,2) C. (,2) D. (2, )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年是“精准扶贫”攻坚关键年,某扶贫工作队为对口扶贫村引进建立了一村集体企业,并无偿提供一笔无息贷款作为启动资金,双方约定:①企业生产出的产品全部由扶贫工作队及时联系商家收购;②企业从生产销售的利润中,要保证按时发放工人每月最低工资32000元.已知该企业生产的产品成本为20元/件,月生产量y(千件)与出厂价x(元)(25≤x≤50)的函数关系可用图中的线段AB和BC表示,其中AB的解析式为y=﹣x+m(m为常数).
(1)求该企业月生产量y(千件)与出厂价x(元)之间的函数关系式,并写出自变量x的取值范围.
(2)当该企业生产出的产品出厂价定为多少元时,月利润W(元)最大?最大利润是多少?[月利润=(出厂价﹣成本)×月生产量﹣工人月最低工资].
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)观察猜想
如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是_____;
(2)拓展探究
将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.
(3)解决问题
若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示.
销售量p(件) | P=50—x |
销售单价q(元/件) | 当1≤x≤20时,q=30+x; 当21≤x≤40时,q=20+ |
(1)求该网店第x天获得的利润y关于x的函数关系式;
(2)这40天中该网店第几天获得的利润最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com