【题目】下面是小明设计的“作一个以已知线段为对角线正方形”的尺规作图过程.
已知:线段AC
求证:四边形ABCD为正方形
作法:如图,
①作线段AC的垂直平分线MN 交AC于点O;
②以点O为圆心CO长为半径画圆,交直线MN于点B,D;
③顺次连接AB,BC,CD,DA;
所以四边形ABCD为所作正方形.
根据小明设计的尺规作图过程,完成以下任务.
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵OA=OB,OC=OD,
∴四边形 ABCD为平行四边形.(__________________)(填写推理依据)
∵OA=OB=OC=OD即AC=BD.
∴ABCD为 (__________________)(填写推理依据).
∵ AC⊥BD,
∴四边形 ABCD为正方形(__________________________).(填写推理依据)
【答案】对角线互相平分的四边形是平行四边形,矩形,对角线相等且互相平分的四边形是矩形
【解析】
(1)根据作图步骤画出图形即可;
(2)根据对角线相等且互相平分的四边形是矩形进行判定即可.
(1)作图如下;
(2)证明:∵OA=OB,OC=OD,
∴四边形 ABCD为平行四边形.(__对角线互相平分的四边形是平行四边形__)
∵OA=OB=OC=OD即AC=BD.
∴ABCD为 矩形 (__对角线相等且互相平分的四边形是矩形__)(填写推理依据).
∵ AC⊥BD,
∴四边形 ABCD为正方形(___对角线互相垂直的矩形是正方形___).(填写推理依据)
故答案为:对角线互相平分的四边形是平行四边形;矩形;对角线相等且互相平分的四边形是矩形;对角线互相垂直的矩形是正方形.
科目:初中数学 来源: 题型:
【题目】如图,平行四边形ABCD中,AB∶BC=3∶2,∠DAB=60°,E在AB上,且AE∶EB=1∶2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP∶DQ等于
A.3∶4 B.∶ C.∶ D.∶
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知等腰Rt△ABC中,AB=AC,∠BAC=,点A、B分别在x轴和y轴上,点C的坐标为(6,2).
(1)如图1,求A点坐标;
(2)如图2,延长CA至点D,使得AD=AC,连接BD,线段BD交x轴于点E,问:在x轴上是否存在点M,使得△BDM的面积等于△ABO的面积,若存在,求点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国家支持大学生创新办实业,提供小额无息贷款,学生王亮享受国家政策贷款36000元用于代理某品牌服装销售,已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条线段(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含贷款).
(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;
(2)若该店暂不考虑偿还贷款,当某天的销售价为48元/件时,当天正好收支平衡(销售额-成本=支出),求该店员工的人数;
(3)若该店只有2名员工,则该店至少需要多少天能还清所有贷款?此时每件服装的价格应定为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).
(1)当点A′落在边BC上时,求x的值;
(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;
(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了促进学生体育锻炼,某校八年级进行了体育测试,为了解女生体育测试情况,从中抽取了若干名女生的体育测试成绩.
a.体育委员小李在整理频数分布表时,不小心污染了统计表:
分组(分) | 频数 | 频数 |
21<x≤22 | 8 | 0.200 |
22<x≤23 | 4 | n |
23<x≤24 | 7 | 0.175 |
24<x≤25 | 3 | 0.075 |
25<x≤26 | 2 | 0.050 |
26<x≤27 | 8 | 0.200 |
27<x≤28 | m | 0.150 |
28<x≤29 | 2 | 0.050 |
合计 |
b.根据频数分布表,绘制如下频数分布直方图:
c.在此次测试中,共测试了800米,篮球,仰卧起坐,成绩统计如下:
项目 | 平均分 | 中位数 | 众数 |
800米 | 8.27 | 8.5 | 8.5 |
仰卧起坐 | 7.61 | 8 | 7.5 |
篮球 | 8.69 | 9 | 8 |
根据以上信息,回答下列问题:
(1)写出表中m,n的值;
(2)补全直方图;
(3)请结合C中统计图表,给该校女生体育训练提供建议(至少从两个不同的角度分析).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读下列解题过程,然后解答问题⑴、⑵,解方程:。
解:①当3x≥0时,原方程可化为一元一次方程3x=1,它的解是;
②当3x≤0时,原方程可化为一元一次方程-3x=1,它的解是。
⑴请你根据以上理解,解方程:;
⑵探究:当b为何值时,方程,①无解;②只有一个解;③有两个解。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”. 例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“和解方程”.
请根据上述规定解答下列问题:
(1)已知关于x的一元一次方程3x=m是“和解方程”,求m的值;
(2)已知关于x的一元一次方程﹣2x=mn+n是“和解方程”,并且它的解是x=n,求m,n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上有A、B、C、D、O五个点,点O为原点,点C在数轴上表示的数是5,线段CD的长度为4个单位,线段AB的长度为2个单位,且B、C两点之间的距离为11个单位,请解答下列问题:
(1)点D在数轴上表示的数是 ,点A在数轴上表示的数是 ;
(2)若点B以每秒2个单位的速度向右匀速运动t秒运动到线段CD上,且BC的长度是3个单位,根据题意列出的方程是 ,解得t= ;
(3)若线段AB、CD同时从原来的位置出发,线段AB以每秒2个单位的速度向右匀速运动,线段CD以每秒3个单位的速度向左匀速运动,把线段CD的中点记作P,请直接写出,点P与线段AB的一个端点的距离为1.5个单位时运动的时间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com