精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC 中,∠C=65°,AD BC 边上的高.

1)求∠CAD 的度数;

2)若∠B=45°,AE 平分∠BAC求∠EAD 的度数.

【答案】125°;(2)10°.

【解析】

根据直角三角形两锐角互余可得∠CAD=90°-C,再利用三角形的内角和定理求出∠BAC,根据角平分线的定义求出∠CAE,然后根据∠EAD=CAE-CAD计算即可得解.

1)∵ADBC边上的高

∴∠ADC=90°,

又∠C=65°,

∴∠CAD=90°-65°=25°,

2)∵∠B=45°,∠C=65°,

∴∠BAC=180°-45°-65°=70°,

AE平分∠BAC,

∴∠CAE=∠BAC=35°,

∴∠EAD=∠EAC-∠CAD=35°-25°=10°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).

(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;

(2)y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:MON=30o,点A1、A2、A3 在射线ON上,点B1、B2、B3…..在射线OM上,A1B1A2. A2B2A3A3B3A4……均为等边三角形,若OA1=l,则A6B6A7 的边长为【 】

A.6 B.12 C.32 D.64

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB,CD被直线EF所截,交点分别为G,H, ∠CHG=∠DHG=∠AGE.

(1)CDEF有怎样的位置关系?请说明理由.

(2)求∠CHG的同位角、内错角、同旁内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 RtABC 中,∠ACB=90°BC=5,点 P 在边 AB 上,连接 CP.将△BCP 沿直线CP 翻折后,点 B 恰好落在边 AC 的中点处,则点 P AC 的距离是( )

A. 2.5 B. C. 3.5 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,四边形ABCD是正方形,动点P从点A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止;动点Q从A出发,以1cm/s的速度沿边AD匀速运动到D终止,若P、Q两点同时出发,运动时间为ts,△APQ的面积为Scm2 . S与t之间函数关系的图象如图2所示.

(1)求图2中线段FG所表示的函数关系式;
(2)当动点P在边AB运动的过程中,若以C、P、Q为顶点的三角形是等腰三角形,求t的值;
(3)是否存在这样的t,使PQ将正方形ABCD的面积恰好分成1:3的两部分?若存在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l3、l4、l2上.若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,∠ACB=90°,CD⊥ABD,∠BAC的平分线AFCD于点E,交BCF,CM⊥AFM,CM的延长线交AB于点N.

(1)求证:EM=FM;

(2)求证:AC=AN.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若数a使关于x的不等式组 有且仅有四个整数解,且使关于y的分式方程 + =2有非负数解,则所以满足条件的整数a的值之和是(
A.3
B.1
C.0
D.﹣3

查看答案和解析>>

同步练习册答案