【题目】(1)(探索发现)
如图1,在正方形ABCD中,点M,N分别是边BC,CD上的点,∠MAN=45°,若将△DAN绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为8,则正方形ABCD的边长为 .
(2)(类比延伸)
如图2,在四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M,N分别在边BC,CD上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.
(3)(拓展应用)
如图3,在四边形ABCD中,AB=AD=2,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,AN,△ABM是等边三角形,AM⊥AD于点A,∠DAN=15°,请直接写出△CMN的周长.
【答案】(1)4;(2)MN=NM+DN,理由见解析;(3)6+4
【解析】
(1)求出MN=BM+DN,证明△MNC的周长=BC+CD即可解决问题;
(2)延长CB至E,使BE=DN,连接AE,首先证明△ABE≌△ADN,然后证明△MAN≌△MAE,根据全等三角形的性质可得结论;
(3)如图3,延长BA,CD交于G,解30度直角三角形求出DG和AG,进而得到BC和CD,然后根据(2)中结论计算即可.
解:(1)如图1中,∵△MAN≌△MAG,
∴MN=GM,
∵DN=BG,GM=BG+BM,
∴MN=BM+DN,
∵△CMN的周长为:MN+CM+CN=8,
∴BM+CM+CN+DN=8,
∴BC+CD=8,
∴BC=CD=4,
故答案为4;
(2)结论:MN=NM+DN.
理由:如图2中,延长CB至E,使BE=DN,连接AE,
∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,
∴∠D=∠ABE,
在△ABE和△ADN中,,
∴△ABE≌△ADN(SAS),
∴AN=AE,∠DAN=∠BAE,
∵∠BAD=2∠MAN,
∴∠DAN+∠BAM=∠MAN,
∴∠MAN=∠EAM,
在△MAN和△MAE中,,
∴△MAN≌△MAE(SAS),
∴MN=EM=BE+BM=BM+DN;
(3)如图3,延长BA,CD交于G,
∵∠BAM=60°,∠MAD=90°,
∴∠BAD=150°,
∴∠GAD=30°,
∵AD=2,
∴DG=1,AG=,
∵∠DAN=15°,
∴∠GAN=45°,
∴AG=GN=,
∴BG=2+,
∴BC=2BG=4+2,CG=BG=2+3,
∴CD=CG﹣DG=2+2,
由(2)得,MN=BM+DN,
∴△CMN的周长=CM+CN+MN=CN+DN+CM+BM=BC+CD=4+2+2+2=6+4.
科目:初中数学 来源: 题型:
【题目】如图,一艘轮船以每小时40海里的速度在海面上航行,当该轮船行驶到B处时,发现灯塔C在它的东北方向,轮船继续向北航行,30分钟后到达A处,此时发现灯塔C在它的北偏东75°方向上,求此时轮船与灯塔C的距离.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线的顶点A的坐标为(1,4),抛物线与x轴相交于B、C两点,与y轴交于点E(0,3).
(1)求抛物线的表达式;
(2)已知点F(0,﹣3),在抛物线的对称轴上是否存在一点G,使得EG+FG最小,如果存在,求出点G的坐标;如果不存在,请说明理由.
(3)如图2,连接AB,若点P是线段OE上的一动点,过点P作线段AB的垂线,分别与线段AB、抛物线相交于点M、N(点M、N都在抛物线对称轴的右侧),当MN最大时,求△PON的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明参加学校组织的智力竞答活动,竞赛中有两道单选题完全不会.这两道单选题各有A.B.C三个选项,第一道单选答案是B.第二道单选答案是C.最终两道题小明随机各写了一个答案
(1)小明答对第一道题的概率是 .
(2)请用树状图或者列表求出小明两道题都答对的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与轴、轴分别交于点,,抛物线经过点,将点向右平移5个单位长度,得到点.
(1)求点的坐标;
(2)求抛物线的对称轴;
(3)若抛物线与线段恰有一个公共点,结合函数图象,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接DE,把△DCE沿DE折叠,使点C落在点C′处,当△BEC′为直角三角形时,BE的长为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com