分析 (1)由AB=CB,∠ABC=90°,AE=CF,即可利用HL证得Rt△ABE≌Rt△CBF;
(2)由AB=CB,∠ABC=90°,即可求得∠ACB的度数,即可得∠BAE的度数,又由Rt△ABE≌Rt△CBF,即可求得∠BCF的度数,则由∠ACF=∠BCF+∠ACB即可求得答案.
解答 (1)证明:∵∠ABC=90°,
∴∠CBF=∠ABE=90°,
在Rt△ABE和Rt△CBF中,$\left\{\begin{array}{l}{AE=CF}\\{AB=BC}\end{array}\right.$,
∴Rt△ABE≌Rt△CBF(HL);
(2)解:∵∠ABC=90°,∠BAC=45°,
∴∠ACB=45°,
又∵∠BAE=∠CAB-∠CAE=45°-30°=15°,
由(1)知:Rt△ABE≌Rt△CBF,
∴∠BCF=∠BAE=15°,
∴∠ACF=∠BCF+∠ACB=45°+15°=60°.
点评 此题考查了直角三角形全等的判定与性质.此题难度不大,解题的关键是注意数形结合思想的应用.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com