精英家教网 > 初中数学 > 题目详情
4.如图,在△ABC中,点D、E、F分别在边AB、AC、BC上,且DE∥BC,EF∥AB,若AD=2BD,则$\frac{CF}{CB}$的值为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{2}{3}$

分析 先由AD=2BD,求得BD:AB的比,再由DE∥BC,根据平行线分线段成比例定理,可得CE:AC=BD:AB,然后由EF∥AB,根据平行线分线段成比例定理,可得CF:CB=CE:AC,则可求得答案.

解答 解:∵AD=2BD,
∴BD:AB=1:3,
∵DE∥BC,
∴CE:AC=BD:AB=1:3,
∵EF∥AB,
∴CF:CB=CE:AC=1:3.
故选B.

点评 此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

8.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是(  )
A.ac>0
B.方程ax2+bx+c=0的两根是x1=-1,x2=3
C.不等式ax2+bx+c<0的解集是-1<x<3
D.当x>0时,y随x的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知A=$\frac{{x}^{2}-1}{{x}^{2}+2x}$-$\frac{x-1}{x}$,B=2x2+4x+2.
(1)化简A,并对B进行因式分解;
(2)当B=0时,求A的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知x2-3x+1=0,求$\sqrt{\frac{3{x}^{3}+2{x}^{2}+3x}{{x}^{4}-3{x}^{2}+1}}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在四边形ABCD中,∠BCD+∠B=180°,AC⊥CB于C,EF⊥CB于F,∠1和∠2相等吗?请完成下面的说理过程.
说明:因为∠BCD+∠B=180°(已知)
所以AB∥CD(同旁内角互补,两直线平行)
因为AC⊥CB,EF⊥CB(已知)
所以∠ACB=∠EFB=90°(垂直的定义)
所以AC∥EF(同位角相等,两直线平行)
所以∠2=∠3(两直线平行,同位角相等)
所以∠1=∠2(等量代换)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,正△ABC的边长是4,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当2$\sqrt{2}$≤r≤4时,S的取值范围是2π-4≤x≤$\frac{16}{3}$π-4$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下面两个多位数1397139,6842684,…都是按照如下方法得到的:从左边起,将第1位数字乘以3,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位.再对第2位数字再进行如上操作,得到第3位数字…,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是2时,若按如上操作得到一个多位数,则这个多位数前50位数字之和是(  )
A.242B.248C.254D.258

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,在矩形ABCD中,AB=8,BC=12,点E为BC的中点.连接AE,将△ABE沿AE折叠,点B落在点F处,连接CF,现将△CEF绕点E顺时针旋转α角(其中0°≤α≤180°)得到△EC1F1,旋转过程中,直线C1F1分别交射线EC、射线AE于点M、N,当EM=EN时,则CM=6-$\frac{12\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在矩形ABCD中,AB=3,BC=4,动点P以每秒一个单位的速度从点A出发,沿对角线AC向点C移动,同时动点Q以相同的速度从点C出发,沿边CB向点B移动.设P,Q两点移动时间为t秒(0≤t≤4).
(1)用含t的代数式表示线段PC的长是5-t;
(2)当△PCQ为等腰三角形时,求t的值;
(3)以BQ为直径的圆交PQ于点M,当M为PQ的中点时,求t的值.

查看答案和解析>>

同步练习册答案