精英家教网 > 初中数学 > 题目详情

【题目】如图1,在等腰中,,点为边上一点(不与点、点重合),,垂足为,交于点.

1)请猜想之间的数量关系,并证明;

2)若点为边延长线上一点,,垂足为,交延长线于点,请在图2中画出图形,并判断(1)中的结论是否成立.若成立,请证明;若不成立,请写出你的猜想并证明.

【答案】1)猜想:.证明见解析;(2)如图2所示,(1)中的结论仍然成立,证明见解析.

【解析】

1)结论:PN=2BM.如图1中,作PEACBCE,交BDF.只要证明ASA)即可解决问题;

2)结论不变,证明方法类似(1);

1)猜想:.

证明:如图1,过点,交于点

.

.

.

.

.

.

.

.

.

.

.

2)如图2所示,(1)中的结论仍然成立

证明:如图2,过点,交延长线于点

.

.

.

.

.

.

.

.

.

.

.

.

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人在同一直线噵路上同起点,同方向同进出发,分别以不同的速度匀速跑步1500米,当甲超出乙200米时,甲停下来等候乙,甲、乙会合后,两人分别以原来的速度继续跑向终点,先到达终点的人在终点休息,在跑步的整个过程中,甲、乙两人的距离y(米)与出发的时间x(秒)之间的关系如图所示,则甲到终点时,乙距离终点______________米。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形纸片ABCD,点EF分别在边ABCD上,连接EF,将∠BEF对折 B落在直线EF上的点B处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A得折痕EN,若∠BEM62°15′ ,则∠AEN_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABD中,ACBD于点C ,点EAB的中点,tanD2CE1,求sinECB的值和AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD内接于⊙OA的中点,AEACA,与⊙OCB的延长线交于点FE,且.

(1)求证:△ADC∽△EBA

(2)如果AB8CD5,求tan∠CAD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,桌上有9张卡片,每张卡片的一面写数字1,另一面写数字-1.每次翻动任意2(包括已翻过的牌)。改变其向上的面,然后计算能看到的所有牌面数字的积请问, 当翻了2019次时牌面数字的积为( )

A.1B.-1C.2019D.-2019

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.

(1)求抛物线y=﹣x2+ax+b的解析式;

(2)当点P是线段BC的中点时,求点P的坐标;

(3)在(2)的条件下,求sin∠OCB的值.

【答案】(1) y=﹣x2+4x﹣3;(2) P的坐标为();(3) .

【解析】分析:(1)将点AB代入抛物线y=-x2+ax+b,解得ab可得解析式;

(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;

(3)由P点的坐标可得C点坐标,ABC的坐标,利用勾股定理可得BC长,利用sin∠OCB=可得结果.

详解:(1)将点A、B代入抛物线y=﹣x2+ax+b可得,

解得,a=4,b=﹣3,

∴抛物线的解析式为:y=﹣x2+4x﹣3;

(2)∵点Cy轴上,

所以C点横坐标x=0,

∵点P是线段BC的中点,

∴点P横坐标xP==

∵点P在抛物线y=﹣x2+4x﹣3上,

yP=﹣3=

∴点P的坐标为();

(3)∵点P的坐标为(),点P是线段BC的中点,

∴点C的纵坐标为﹣0=

∴点C的坐标为(0,),

BC==

sinOCB===

点睛:本题主要考查了待定系数法求二次函数解析式,二次函数图像与性质,解直角三角形,勾股定理,利用中点求得点P的坐标是解答此题的关键.

型】解答
束】
24

【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.

(1)求证:△ACF∽△DAE;

(2)若S△AOC=,求DE的长;

(3)连接EF,求证:EF是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上点A表示数a,点B表示数bab满足|a20|+b+1020O是数轴原点,点Q从点B出发,以每秒3个单位长度的速度沿数轴正方向匀速运动,设运动时间为t秒.

1)点A表示的数为   ,点B表示的数为   

2t为何值时,BQ2AQ

3)若在点Q从点B出发的同时,点P从点O出发,以每秒2个单位长度的速度一直沿数轴正方向匀速运动,而点Q运动到点A时,立即改变运动方向,沿数轴的负方向运动,到达点B时停止运动,在点Q的整个运动过程中,是否存在合适的t值,使得PQ6?若存在,求出所有符合条件的t值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某校为了创建书香校园,去年购进一批图书.经了解,科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等.

1)文学书和科普书的单价各多少钱?

2)今年文学书和科普书的单价和去年相比保持不变,该校打算用10000元再购进一批文学书和科普书,问购进文学书550本后至多还能购进多少本科普书?

查看答案和解析>>

同步练习册答案