【题目】如图,在△ABC中,AB=AC,CD是AB边上的中线,延长AB到点E,使BE=AB,连接CE.求证:CD= CE.
科目:初中数学 来源: 题型:
【题目】如图1,在等边中,,动点从点出发以的速度沿匀速运动,动点同时从点出发以同样的速度沿的延长线方向匀速运动,当点到达点时,点、同时停止运动.设运动时间为,过点作于,交边于,线段的中点为,连接.
(1)当为何值时,与相似;
(2)在点、运动过程中,点、也随之运动,线段的长度是否会发生变化?若发生变化,请说明理由,若不发生变化,求的长;
(3)如图2,将沿直线翻折,得,连接,当为何值时,的值最小?并求出最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的顶点坐标分别为, ,.
(1)的面积是_______;
(2)请以原点为位似中心,画出,使它与的相似比为,变换后点的对应点分别为点,点在第一象限;
(3)若为线段上的任一点,则变换后点的对应点的坐标为 _______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A,P,B,C是⊙O上的四个点,∠DAP=∠PBA.
(1)求证:AD是⊙O的切线;
(2)若∠APC=∠BPC=60°,试探究线段PA,PB,PC之间的数量关系,并证明你的结论;
(3)在第(2)问的条件下,若AD=2,PD=1,求线段AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=kx+2与x轴交于点A(m,0)(m>4),与y轴交于点B,抛物线y2=ax2﹣4ax+c(a<0)经过A,B两点.P为线段AB上一点,过点P作PQ∥y轴交抛物线于点Q.
(1)当m=5时,
①求抛物线的关系式;
②设点P的横坐标为x,用含x的代数式表示PQ的长,并求当x为何值时,PQ=;
(2)若PQ长的最大值为16,试讨论关于x的一元二次方程ax2﹣4ax﹣kx=h的解的个数与h的取值范围的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在置于平面直角坐标系中,点的坐标为,点的坐标为,点是内切圆的圆心.将沿轴的正方向作无滑动滚动,使它的三边依次与轴重合,第一次滚动后圆心为,第二次滚动后圆心为,…,依此规律,第2020次滚动后,内切圆的圆心的坐标是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】ABCD中,E是CD边上一点,
(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是 ,∠AFB=∠
(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ;
(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC的纸片中,∠C=90°,AC=5,AB=13.点D在边BC上,以AD为折痕将△ADB折叠得到△ADB′,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,O为坐标原点,对于任意两点P(m,y)Q(m,y0),m为任意实数.若y0=,则称点Q是点P的变换点.例如:若点P(1,y)在直线y=x上,点P的变换点Q在函数y=的图象上设点P(m,y)在函数y=﹣x2+2x+3的图象上,点P的变换点Q所在的图象记为G.
(1)求图象G对应的函数关系式;
(2)设图象G与x轴的交点为A、B(点A在点B的左侧)与y轴交于点C,连结AC、BC,求△ABC的面积;
(3)当﹣2≤x≤m时,若图象G的最高点与最低点之间的距离不大于,直接写出m的取值范围;
(4)设点P(,y)在函数y=ax2﹣3ax﹣4a(a≠0)的图象上,点P的变换点Q所在的图象记为G1,图象G1与x轴的交点为M、N(点M在点N的左侧),连结MN,将MN沿y轴向上平移一个单位得到线段M'N',当图象G1与线段M'N'只有一个交点时,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com