精英家教网 > 初中数学 > 题目详情

【题目】二次函数yax2+bx+c的图象如图所示,则下列判断中错误的是

A.图象的对称轴是直线x1 B.当x>1时,y随x的增大而减小

C.一元二次方程ax2+bx+c0的两个根是-1,3 D.当-1<x<3时,y<0

【答案】D

【解析】二次函数的图象与x轴的交点为(-1,0),(3,0),

抛物线的对称轴直线为:x==1,故A正确;

抛物线开口向下,对称轴为x=1,

当x>1时,y随x的增大而减小,故B正确;

二次函数的图象与x轴的交点为(-1,0),(3,0),

一元二次方程ax2+bx+c=0的两个根是-1,3,故C正确;

当-1<x<3时,抛物线在x轴的上方,

当-1<x<3时,y>0,故D错误.故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某小区业主委员会决定把一块长50m,宽30m的矩形空地建成健身广场,设计方案如图所示,阴影区域为绿化区(四块绿化区为全等的矩形),空白区域为活动区,且四周的4个出口宽度相同,其宽度不小于14m,不大于26m,设绿化区较长边为xm,活动区的面积为ym2

(1)直接写出:①用x的式子表示出口的宽度为   

yx的函数关系式及x的取值范围   

(2)求活动区的面积y的最大面积;

(3)预计活动区造价为50/m2,绿化区造价为40/m2,如果业主委员会投资不得超过72000元来参与建造,当x为整数时,共有几种建造方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线交于P.下面结论:

,②∠A=∠BHE,③AB=BH,④△BHD∽△BDP.

请你把你认为正确的结论的番号都填上 (填错一个该题得0分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.

(1)当y1随着x的增大而增大时,求自变量x的取值范围;

(2)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,用长20米的篱笆围成一个一面靠墙的长方形的菜园,设菜园的宽为x米,面积为y平方米.

(1)求y与x的函数关系式及自变量的取值范围;

(2)怎样围才能使菜园的面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+bx+c(其中b,c为常数,c>0)的顶点恰为函数y=2xy=的其中一个交点.则当a2+ab+c>2a时,a的取值范围是 

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的解析式为y=-x2+4x,该二次函数交x轴于OB两点,A为抛物线上一点,且横纵坐标相等(原点除外),P为二次函数上一动点,过Px轴垂线,垂足为D(a,0)(a>0),并与直线OA交于点C.

(1)AB两点的坐标;

(2)当点P在线段OA上方时,过Px轴的平行线与线段OA相交于点E,求PCE周长的最大值及此时P点的坐标;

(3)PCCO时,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,关于的分式方程.

1)当时,求分式方程的解;

2)当时,求为何值时分式方程无解:

3)若,且为正整数,当分式方程的解为整数时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在Rt△ABC中,∠C=90°,AC=4cmBC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1cm/s的速度沿AC向终点C运动;点Q以1.25cm/s的速度沿BC向终点C运动,两点到达终点后停止运动。过点P作PE∥BC交AD于点E,连结EQ,设动点运动的时间为ts(t>0)

(1) 连结DP,经过1s后,四边形EQDP能够成为平行四边形吗? 请说明理由;

(2) 当t为何值时,△EDQ为直角三角形?

(3) 如图②,设点M是EQ的中点,在点P、Q的整个运动过程中,试探究点M的运动路径长度是多少?

查看答案和解析>>

同步练习册答案