【题目】如图①,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1cm/s的速度沿AC向终点C运动;点Q以1.25cm/s的速度沿BC向终点C运动,两点到达终点后停止运动。过点P作PE∥BC交AD于点E,连结EQ,设动点运动的时间为ts(t>0)。
(1) 连结DP,经过1s后,四边形EQDP能够成为平行四边形吗? 请说明理由;
(2) 当t为何值时,△EDQ为直角三角形?
(3) 如图②,设点M是EQ的中点,在点P、Q的整个运动过程中,试探究点M的运动路径长度是多少?
【答案】(1)能.四边形EQDP是平行四边形. (2)当t为2.5或3.1时,△EDQ为直角三角形(3)点M的运动路径长度是cm
【解析】试题分析:(1)如图1,当t=1时,AP=1,BQ=1.25,QD=0.75.由PE∥DC,得到EP=0.75,从而有EP=QD,再由EP∥QD,即可得到结论;
(2)分∠EQP=90°,∠QED=90°两种情况,通过三角形相似,列出比例关系,求出t的值即可;
(3)作AB的中点M,DC的中点M′,连接MM′,则M运动的路径就是线段MM′.过M作MG⊥BC于G.可以证明MG是△ABC的中位线,得到MG=2,BG=GC=2.5.再由M′是DC的中点,得到M′C=1.5,进而得到GM′=2.5-1.5=1,在Rt△MGM′中,由勾股定理即可得出MM′的长.
试题解析:解:(1)能.理由如下:
如图1,当t=1时,AP=1,BQ=1.25,QD=2-1.25=0.75.∵PE∥DC,∴ ,∴,∴EP=0.75,∴EP=QD.∵EP∥QD,∴四边形EQDP是平行四边形.
(2)分两种情况讨论:
①如图3,当∠EQD=90°时,显然有EQ=PC=4﹣t.又∵EQ∥AC,∴△EDQ∽△ADC,
∴.∵BC=5厘米,CD=3厘米,∴BD=2厘米,∴DQ=1.25t﹣2,∴ ,解得t=2.5(秒);
②如图4,当∠QED=90°时,作EM⊥BC于M,CN⊥AD于N,则四边形EMCP是矩形,EM=PC=4﹣t.在Rt△ACD中,∵AC=4厘米,CD=3厘米,∴AD==5,∴CN==.∵∠CDA=∠EDQ,∠QED=∠C=90°,∴△EDQ∽△CDA,∴,∴,解得t=3.1(秒).
综上所述:当t=2.5秒或t=3.1秒时,△EDQ为直角三角形.
(3)作AB的中点M,DC的中点M′,连接MM′,则M运动的路径就是线段MM′.过M作MG⊥BC于G.∵M是AB的中点,∴G是BC的中点,∴MG是△ABC的中位线,∴MG=AC=2,BG=GC=2.5.∵M′是DC的中点,∴M′C=DC=1.5,∴GM′=2.5-1.5=1,∴MM′===(cm).
科目:初中数学 来源: 题型:
【题目】如图,已知点A(2,2)是双曲线上一点,点B是双曲线上位于点A右下方的另一点,C是x轴上的点,且△ABC是以∠B为直角的等腰直角三角形,则点B的坐标是__________。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54,则∠B=( )
A. 54 B. 60 C. 72 D. 66
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AOB的三个顶点都在网格的格点上,网格中的每个小正方形的边长均为一个长度单位,以点O建立平面直角坐标系,若△AOB绕点O逆时针旋转90后,得到△A1OB1(A和A1是对应点)
(1)写出点A1,B1的坐标 ;
(2)求旋转过程中边OB扫过的面积(结果保留π);
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,-3,+10,-8,-6,+12,-10
(1)守门员最后是否回到了球门线的位置?
(2)在练习过程中,守门员离开球门最远距离是多少米?
(3)守门员全部练习结束后,他共跑了多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题,求的立方根.华罗庚脱口而出,你知道怎样迅速准确地计算出结果的吗?请按照下面的问题试一试:
(1)由,确定的立方根是 位数;
(2)由的个位数是确定的立方根的个位数是 ;
(3)如果划去后面的三位得到数,而,由此能确定的立方根的十位数是 ;所以的立方根是 ;
(4)用类似的方法,请说出的立方根是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com