(1)如图1所示,在等边△ABC中,点D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE,求证:AE∥BC;
(2)如图2所示,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形,所作△EDC相似于△ABC,请问仍有AE∥BC?证明你的结论.
![]()
【考点】相似三角形的判定与性质;全等三角形的判定与性质.
【专题】动点型;探究型.
【分析】(1)证明△ACE≌△BCD推出∠ACB=∠EAC即可证.
(2)证明△ABC∽△EDC后可推出∠EAC=∠ACB,由此可证.
【解答】证明:(1)∵△ABC和△EDC是等边三角形
∴∠ACB=∠ECD=60°,AC=CB,EC=DC,
∴∠ACD+∠BCD=∠ACE+∠ACD,
∴∠BCD=∠ACE,
∴△ACE≌△BCD,
∴∠EAC=∠B=60°,
又∵∠ACB=60°,
∴∠ACB=∠EAC,
∴AE∥BC;
(2)仍平行;
∵△ABC∽△EDC,
∴∠ACB=∠ECD,
,
∴∠ACD+∠BCD=∠ACE+∠ACD,
∴∠BCD=∠ACE,
∴△AEC∽△BDC,
∴∠EAC=∠B,
又∵∠ACB=∠B,
∴∠EAC=∠ACB,
∴AE∥BC.
【点评】本题考查的是全等三角形的判定以及相似三角形的判定的有关知识.关键是证明△ACE≌△BCD和△ABC∽△EDC.
科目:初中数学 来源: 题型:
如图,∠BAC=90°,以AB为直径作⊙O,BD∥OC交⊙O于D点,CD与AB的延长线交于点E.
(1)求证:CD是⊙O的切线;
(2)若BE=2,DE=4,求CD的长;
(3)在(2)的条件下,如图2,AD交BC、OC分别于F、G,求![]()
的值.
![]()
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com