【题目】学校利用五一组织老师去娄山关进行红色文化拓展活动,现有甲、乙两家旅行 社可供选择,票价都是元/人,甲旅行社的优惠方案是:按总价打八五折;乙旅行社 的优惠方案是:前人按原价付费,超过的部分折优惠.该校有教师人.
(1)设总价为元.写出与之间的函数关系式;
(2)在不晓得该校人数的情况下,请给学校提出比较省钱的购票建议.
【答案】(1) y甲=180×0.85x=153x, y乙= ;(2) 当x<96时,甲旅行社收费更优惠;当旅游的人数为96人时,甲、乙旅行社收费一样;当 x>96时,乙旅行社收费更优惠.
【解析】
(1)根据总费用等于人数乘以打折后的单价,易得y甲=180×0.85x,对于乙旅行社的总费用,分类讨论:当0x60时,y乙=180x,当x>60时,y乙=180×60+180×0.6(x60);
(2) 分当y甲=y乙时,当y甲<y乙时,当y甲>y乙时,三种情况找出x的取值范围或x的值,此题得解.
解:(1)甲旅行社的总费用:y甲=180×0.85x=153x,
乙旅行社的总费用:当0x60时,y乙=180x,
当x>60时,y乙=180×60+180×0.6(x60)=108x+4320;
∴y乙= ;
(2)当y甲=y乙时,即108x+4320=153x,
解得:x=96;
当y甲<y乙时,即108x+4320>153x,
解得:x<96,
当y甲>y乙时,即108x+4320<153x,
解得:x>96,
综上所述:当x<96时,甲旅行社收费更优惠;当旅游的人数为96人时,甲、乙旅行社收费一样;当 x>96时,乙旅行社收费更优惠.
科目:初中数学 来源: 题型:
【题目】综合与实践
已知,在Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕点D旋转,它的两边分别交AC,CB(或它们的延长线)于点E,F.
(1)(问题发现)
如图1,当∠EDF绕点D旋转到DE⊥AC于点E时(如图1),
①证明:△ADE≌△BDF;
②猜想:S△DEF+S△CEF= S△ABC.
(2)(类比探究)
如图2,当∠EDF绕点D旋转到DE与AC不垂直时,且点E在线段AC上,试判断S△DEF+S△CEF与S△ABC的关系,并给予证明.
(3)(拓展延伸)
如图3,当点E在线段AC的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的关系?(写出你的猜想,不需证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
(Ⅰ)若AB=4,求 的长;
(Ⅱ)若 = ,AD=AP,求证:PD是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.
(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;
(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:
(概念理解)
在一个三角形中,如果一个角的度数是另一个角度数的 4 倍,那么这样的三角形我们称之为“完美三角形”.如:三个内角分别为 130°,40°,10°的三角形是“完美三角形”.
(简单应用)
如图 1,∠MON=72°,在射线OM上找一点A,过点A作AB⊥OM 交ON于点B,以A为端点作射线AD,交线段OB 于点C(点 C不与 O,B重合)
(1)∠ABO= ,△AOB__________(填“是”或“不是”)“完美三角形”;
(2)若∠ACB=90°,求证:△AOC是“完美三角形”.
(应用拓展)
如图 2,点D在△ABC 的边AB上,连接DC,作∠ADC的平分线交AC于点E,在DC上取点F,使,.若△BCD是“完美三角形”, 求∠B的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,E是CB延长线上一个动点,F、G分别为AE、BC的中点,FG与ED相交于点H
(1) 求证:HE=HG
(2) 如图2,当BE=AB时,过点A作AP⊥DE于点P连接BP,求的值
(3) 在(2)的条件下,若AD=2,∠ADE=30°,则BP的长为______________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】矩形ABCD中,对角线AC和BD相交于O,∠AOB=60度,AC=10,(1)求矩形较短边的长.
(2)矩形较长边的长
(3)矩形的面积
如果把本题改为:矩形ABCD中,对角线AC和BD相交于O,∠AOB=60度,AB=4,你能求出这个矩形的面积吗?试写出解答过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,
(1)求证:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探索平方差公式的几何背景
如图1,边长为a的大正方形中有一个边长为b的小正方形.
(1)请表示图中阴影部分的面积: ;
(2)小颖将阴影部分拼成了一个长方形(如图2),这个长方形的长和宽分别是 ,它的面积是 ;
(3)比较(1)(2)的结果,你能验证平方差公式吗?说一说验证的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com