【题目】在△ABC中,AB=13,BC=14.
(1)如图1,AD⊥BC于点D,且BD=5,则△ABC的面积为 ;
(2)在(1)的条件下,如图2,点H是线段AC上任意一点,分别过点A,C作直线BH的垂线,垂足为E,F,设BH=x,AE=m,CF=n,请用含x的代数式表示m+n,并求m+n的最大值和最小值.
【答案】(1)84;(2)m+n的最大值为15,最小值为12.
【解析】
(1)先由勾股定理求得AD=12,然后利用三角形的面积公式求解即可;
(2)依据S△ABC=S△ABH+S△BHC可知BHAE+BHCF=84,然后将BH=x,AE=m,CF=n代入整理即可.
解:(1)在Rt△ABD中,AB=13,BD=5,
∴AD===12.
∵BC=14,
∴==84.
故答案为:84.
(2)∵S△ABC=S△ABH+S△BHC,
∴.
∴xm+xn=168.
∴m+n=
∵AD=12,DC=14﹣5=9,
∴AC==15.
∵m+n与x成反比,
∴当BH⊥AC时,m+n有最大值.
∴(m+n)BH=ACBH.
∴m+n=AC=15.
∵m+n与x成反比,
∴当BH值最大时,m+n有最小值.
∴当点H与点C重合时m+n有最小值.
∴m+n=,
∴m+n=12.
∴m+n的最大值为15,最小值为12.
科目:初中数学 来源: 题型:
【题目】甲,乙两辆汽车先后从A地出发到B地,甲车出发1小时后,乙车才出发,如图所示的l1和l2表示甲,乙两车相对于出发地的距离y(km)与追赶时间x(h)之间的关系:
(1)哪条线表示乙车离出发地的距离y与追赶时间x之间的关系?
(2)甲,乙两车的速度分别是多少?
(3)试分别确定甲,乙两车相对于出发地的距离y(km)与追赶时间x(h)之间的关系式;
(4)乙车能在1.5小时内追上甲车吗?若能,说明理由;若不能,求乙车出发几小时才能追上甲?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求证:四边形ABCE是平行四边形;
(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在边长为5的菱形ABCD中,cos∠BAD= ,点E是射线AB上的点,作EF⊥AB,交AC于点F.
(1)求菱形ABCD的面积;
(2)求证:AE=2EF;
(3)如图2,过点F,E,B作⊙O,连结DF,若⊙O与△CDF的边所在直线相切,求所有满足条件的AE的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O中,点A为 中点,BD为直径,过A作AP∥BC交DB的延长线于点P.
(1)求证:PA是⊙O的切线;
(2)若 ,AB=6,求sin∠ABD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB和CD交于点O,OE⊥AB,垂足为点O,OP平分∠EOD,∠AOD=144°.
(1)求∠AOC与∠COE的度数;
(2)求∠BOP的度数.
【答案】(1)∠AOC=36°,∠COE=54°,(2)∠BOP=27°.
【解析】
(1)由邻补角定义,可求得得∠AOC度数,由垂直定义,可得∠AOE=∠BOE=90°,由余角定义可求得∠COE;
(2)由邻补角定义可得∠DOE度数,由OO平分∠DOE,可得∠EOP度数,再由余角定义可求得∠BOP度数.
(1)∵∠AOC+∠AOD=180°,∠AOD=144°,
∴∠AOC=180°-∠AOD=180°-144°=36°,
∵OE⊥AB,
∴∠AOE=∠BOE=90°,
∴∠COE=∠AOE-∠AOC=90°-36°=54°,
(2)∵∠COE+∠DOE=180°,
∴∠DOE=180°-∠COE=180°-54°=126°,
∵OO平分∠DOE,
∴∠EOP=∠DOE=×126°=63°,
∴∠BOP=∠BOE-∠EOP=90°-63°=27°.
【点睛】
本题考查了对顶角、邻补角以及垂线的性质,是基础知识要熟练掌握.
【题型】解答题
【结束】
27
【题目】如表为某市居民每月用水收费标准,(单位:元/m3).
用水量 | 单价 |
0<x≤20 | a |
剩余部分 | a+1.1 |
(1)某用户1月用水10立方米,共交水费26元,则a= 元/m3;
(2)在(1)的条件下,若该用户2月用水25立方米,则需交水费 元;
(3)在(1)的条件下,若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费81.6元.请问该用户实际用水多少立方米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用22米长的篱笆和6米长的围墙围成一个矩形鸡舍.
(1)爸爸的方案是:一面是墙,另外三面是篱笆,求爸爸围成的鸡舍面积最大是多少?
(2)小明的方案是:把有墙的一面用篱笆加长作为一边,另外三面也是篱笆,要使围成的鸡舍面积最大,求有墙的一面应该再加长几米长的篱笆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,圆D与y轴相切于点C(0,4),与x轴相交于A、B两点,且AB=6.
(1)则D点的坐标是 ( , ),圆的半径为;
(2)sin∠ACB=;经过C、A、B三点的抛物线的解析式;
(3)设抛物线的顶点为F,证明直线FA与圆D相切;
(4)在x轴下方的抛物线上,是否存在一点N,使△CBN面积最大,最大值是多少,并求出N点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知正方形ABCD,直角三角形纸板的一个锐角顶点与点A重合,纸板绕点A旋转时,直角三角形纸板的一边与直线CD交于E,分别过B、D作直线AE的垂线,垂足分别为F、G.
(1)当点E在DC延长线时,如图①,求证:BF=DG﹣FG;
(2)将图①中的三角板绕点A逆时针旋转得图②、图③,此时BF、FG、DG之间又有怎样的数量关系?请直接写出结论(不必证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com