【题目】如图,已知AB是⊙O的直径,AC为弦,且平分∠BAD,AD⊥CD,垂足为D.
(1) 求证:CD是⊙O的切线;
(2) 若⊙O的直径为4,AD=3,试求∠BAC的度数.
【答案】(1)证明见解析;(2)30°.
【解析】
(1)连接OC,证先利用角平分线的定义和等腰三角形的性质证明∠OCA=∠DAC,从而OC∥AD,由平行线的性质可得OC⊥CD,从而得出CD是⊙O切线;
(2)连接BC,证明△ACB∽△ADC,求出AC的长度,再求出∠BAC的余弦,得出∠BAC的度数.
解:(1) 连结OC.
∵平分,∴∠BAC=∠DAC.
又OA=OC, ∴∠BAC=∠OCA, ∴∠OCA=∠DAC, ∴OC∥AD.
∵AD⊥CD, ∴OC⊥CD, ∴CD是⊙O的切线.
(2) 连结BC. ∵AB是⊙O的直径, ∴∠ACB=90°, ∴∠ACB=∠ADC=90°.
又∠BAC=∠DAC, ∴△ACB∽△ADC. ∴, , , ∴AC=.
在Rt△ACB中, cos∠BAC=, ∴∠BAC=30°.
科目:初中数学 来源: 题型:
【题目】一个不透明的布袋中有完全相同的三个小球,把它们分别标号为1,2,3. 小林和小华做一个游戏,按照以下方式抽取小球:先从布袋中随机抽取一个小球,记下标号后放回布袋中搅匀,再从布袋中随机抽取一个小球, 记下标号. 若两次抽取的小球标号之和为奇数,小林赢;若标号之和为偶数,则小华赢.
(1)用画树状图或列表的方法,列出前后两次取出小球上所标数字的所有可能情况;
(2)请判断这个游戏是否公平,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.
(1)求抛物线的解析式;
(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标;
(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知是的外接圆,是的直径,过的中点作的直径交弦于点,连接、、.
(1)如图1,若点是线段的中点,求的度数;
(2)如图2,在上取一点,使,求证:;
(3)如图3,取的中点,连接并延长交于点,连接和交于点,若,且,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知下列命题:
①若,则;
②当时,若,则;
③直角三角形中斜边上的中线等于斜边的一半;
④矩形的两条对角线相等.
其中原命题与逆命题均为真命题的个数是( )
A.个B.个C.个D.个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂拟建一个如图所示的矩形仓库ABCD,仓库的一边是长为12m的一面墙,另外三边用30m长的建筑材料围成.设AB的长为xm,矩形ABCI的面积为Sm2.
(1)用含x的代数式表示BC的长,并求出x的取值范围.
(2)写出S关于x的函数关系式,并求出S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘海轮位于灯塔P的东北方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处.
(1)若灯塔P周围50海里范围内有暗礁,海轮从A处到B处的途中,是否有触礁危险?
(2)若海轮以每小时30海里的速度从A处到B处,试判断海轮能否在5小时内到达B处,并说明理由.(参考数据:≈1.41,≈1.73,≈2.45)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,线段是⊙的直径,过点作直线交⊙于、两点,过点作的角平分线交⊙于,过作的垂线交于
(1)证明是⊙的切线
(2)证明
(3)若⊙的直径为10,,求
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC中,OA=4,AB=3,点D在边BC上,且CD=3DB,点E是边OA上一点,连接DE,将四边形ABDE沿DE折叠,若点A的对称点A′恰好落在边OC上,则OE的长为( )
A.B.C.D.1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com