精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=x2x+m的图象经过点A(1,﹣2)

(1)求此函数图像与坐标轴的交点坐标;

(2)P(-2y1)Q(5y2)两点在此函数图像上,试比较y1y2的大小

【答案】(1)(-10)(30)(2)y1<y2.

【解析】

1)先把A(1,﹣2)代入二次函数yx2x+m求出m,分别令x=0y=0,即可求出与坐标轴交点坐标;

2)先确定抛物线的对称轴为直线x=1,然后根据二次函数的性质,通过比较P点和Q点到对称轴的距离大小得到y1y2的大小.

(1)把点A(1,﹣2)代入二次函数yx2x+m得到:m=-1.5,

原二次函数解析式为

x=0,y=-1.5,则与y轴的交点坐标为(0-1.5)

y=0,则

解得x1=-1x2=3,则与x轴的交点坐标为(-10)(30).

(2)(1)知道的对称轴为x=1

P-2y1)到直线x=1的距离比点Q5y2)到直线x=1的距离小,

而抛物线开口向上,

所以y1y2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数

1)当k=3时,求函数图像与x轴的交点坐标;

2)函数图像的对称轴与原点的距离为3,求k的值

3)设二次函数图像上的一点Pxy)满足时,y≤2,求k的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数的顶点是直线和直线的交点.

(1)用含的代数式表示顶点的坐标.

(2)①当时,的值均随的增大而增大,求的取值范围.

②若,且满足时,二次函数的最小值为,求的取值范围.

(3)试证明:无论取任何值,二次函数的图象与直线总有两个不同的交点.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠ABCBCD90°,点EBC的中点,AEDE

1)求证:ABEECD

2)求证:AE2AB·AD

3)若AB1CD4,求线段ADDE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有两张完全重合的矩形纸片,将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BDMF,若BD4cm,∠ADB30°

1)试探究线段BD与线段MF的数量关系和位置关系,并说明理由;

2)把△BCD与△MEF剪去,将△ABD绕点A顺时针旋转得△AB1D1,边AD1FM于点K(如图2),设旋转角为ββ90°),当△AFK为等腰三角形时,求β的度数.

3)若将△AFM沿AB方向平移得到△A2F2M2(如图3),F2M2AD交于点PA2M2BD交于点N,当NPAB时,求平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,正方形EFGH是由正方形ABCD经过位似变换得到的,点O是位似中心,EFGH分别是OAOBOCOD的中点,则正方形EFGH与正方形ABCD的面积比是(  )

A. 16B. 15C. 14D. 12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知矩形AOCBAB=6cmBC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动.

1)当运动时间为2s时,PQ两点的距离为   cm

2)请你计算出发多久时,点P和点Q之间的距离是10cm

3)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于下列结论:①二次函数y=6x2,当x>0时,y随x的增大而增大;②关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1(a、m、b均为常数,a≠0),则方程a(x+m+2)2+b=0的解是x1=﹣4,x2=﹣1;③设二次函数y=x2+bx+c,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c的取值范围是c≥3.其中,正确结论的个数是(  )

A. 0个 B. 1个 C. 2个 D. 3个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A是我市某小学,在位于学校南偏西15°方向距离120米的C点处有一消防车.某一时刻消防车突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即沿路线CF赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对学校是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对学校的影响时间为几秒?(≈3.6,结果精确到1秒)

查看答案和解析>>

同步练习册答案