【题目】如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动.
(1)当运动时间为2s时,P、Q两点的距离为 cm;
(2)请你计算出发多久时,点P和点Q之间的距离是10cm;
(3)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.
【答案】(1)6;(2)t=或t=,理由见解析;(3)k的值是不会变化,k= ,理由见解析
【解析】
(1)构造出直角三角形,再求出PE,QE,利用勾股定理即可得出结论;
(2)同(2)的方法利用勾股定理建立方程求解即可得出结论;
(3)先求出直线AC解析式,再求出点P,Q坐标,进而求出直线PQ解析式,联立两解析式即可得出结论.
(1)如图1,由运动知,AP=3×2=6cm,CQ=2×2=4cm,
过点P作PE⊥BC于E,过点Q作QF⊥OA于F,
∴四边形APEB是矩形,
∴PE=AB=6,BE=6,
∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,
根据勾股定理得,PQ=6,
故答案为6;
(2)设运动时间为t秒时,
由运动知,AP=3t,CQ=2t,
同(2)的方法得,PE=6,EQ=16﹣3t﹣2t=16﹣5t,
∵点P和点Q之间的距离是10cm,
∴62+(16﹣5t)2=100,
∴t=或t=;
(3)k的值是不会变化,
理由:∵四边形AOCB是矩形,
∴OC=AB=6,OA=16,
∴C(6,0),A(0,16),
设AC直线为y=kx+b,
把C(6,0),A(0,16)代入得,解得
∴直线AC的解析式为y=﹣x+16①,
设运动时间为t,
∴AP=3t,CQ=2t,
∴OP=16﹣3t,
∴P(0,16﹣3t),Q(6,2t),
设PQ直线为y=kx+b,
把P(0,16﹣3t),Q(6,2t),代入得,解得
∴PQ解析式为y=x+16﹣3t②,
联立①②解得,x=,y=,
∴D(,),
∴k=×=是定值.
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,对角线AC,BD相交于点O,下列条件中,不能判断这个平行四边形是菱形的是( )
A. AB=ADB. ∠BAC=∠DACC. ∠BAC=∠ABDD. AC⊥BD
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点达到终点后,另外一点也随之停止运动.
(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?
(2)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于5cm?
(3)在(1)中,当P、Q出发几秒时,△PBQ的面积最大,最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣x+m的图象经过点A(1,﹣2)
(1)求此函数图像与坐标轴的交点坐标;
(2)若P(-2,y1),Q(5,y2)两点在此函数图像上,试比较y1,y2的大小
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格中的每个小方格都是边长为1的正方形,我们把以格点间的连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1).
(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;
(2)把△ABC绕点C按顺时针旋转90°后得△A2B2C2,画出△A2B2C2的图形并写出B2的坐标;
(3)把△ABC以点A为位似中心放大,使放大前后对应边的比为1∶2,画出△AB3C3的图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉淇正在参加全国“数学竞赛”,只要他再答对最后两道单选题就能顺利过关,其中第一道题有3个选项,第二道题有4个选项,而这两道题嘉淇都不会,不过嘉淇还有一次“求助”没有使用(使用“求助”可让主持人去掉其中一题的一个错误选项).
(1)如果嘉淇第一题不使用“求助”,随机选择一个选项,那么嘉淇答对第一道题的概率是多少?
(2)若嘉淇将“求助”留在第二题使用,请用画树状图或列表法求嘉淇能顺利过关的概率;
(3)请你从概率的角度分析,建议嘉洪在第几题使用“求助”,才能使他过关的概率较大.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某网店销售一款工艺品,每件的成本是50元,据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.设销售单价x元.
(1)用含x的代数式表示现在的销售数量为_________件;
(2)当x为多少元时,网店既能让利顾客,又能每天获得销售利润4000元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AC是□ ABCD的对角线,延长BA至点E,使AE=AB,连接DE.
(1)求证:四边形ACDE是平行四边形;
(2)连接EC交AD于点O,若∠EOD=2∠B,求证:四边形ACDE是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:如果x1,x2是一元二次方程ax2+bx+c=0的两根,
那么有x1+x2=﹣,x1x2= .这是一元二次方程根与系数的关系,我们利用它可以用来解题,例x1,x2是方程x2+6x﹣3=0的两根,求x12+x22的值.解法可以这样:∵x1+x2=﹣6,x1x2=﹣3则x12+x22=(x1+x2)2﹣2x1x2=(﹣6)2﹣2×(﹣3)=42.
请你根据以上解法解答下题:已知x1,x2是方程x2﹣4x+2=0的两根,求:
(1) 的值;
(2)(x1﹣x2)2的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com