分析 先根据矩形的性质得出AB∥CD,再分点P分别位于①、②、③、④四个象限分别求解即可.
解答
解:如图1,当点P在①区域时,
∵AB∥CD,
∴∠BEF+∠CFE=180°,
∴∠PEF+∠PFE=(∠PEB+∠PFC)-180°.
∵∠PEF+∠PFE+∠EPF=180°,
∴∠EPF=180°-(∠PEF+∠PFE)=180°-(∠PEB+∠PFC)+180°=
360°-(∠PEB+∠PFC);
当点P在区域②时,如图2所示,
∵AB∥CD,
∴∠BEF+∠CFE=180°,
∵∠EPF+∠FEP+∠PFE=180°,
∴∠EPF=∠PEB+∠PFC;
如图3所示,当点P在区域③时,![]()
∵AB∥CD,
∴∠PFC=∠PHB.
∵∠PEH++PEB=180°,
∴∠PEH=180°-∠PEB.
∵∠EPF+∠PEH+∠PHB=180°,即∠EPF+(180°-∠PEB)+∠PFC=180°,![]()
∴∠PEB=∠EPF+∠PFC;
如图4所示,
∵AB∥CD,
∴∠PFC=∠PHB.
∵∠PHB是△PEH的外角,
∴∠PHB=∠EPF+∠PEB,即∠PFC=∠EPF+∠PEB.
点评 本题考查的是平行线的性质,涉及到三角形内角和定理及三角形外角的性质,根据题意作出辅助线,利用数形结合求解是解答此题的关键.
科目:初中数学 来源: 题型:填空题
| x | -2 | -1 | 0 | 1 | 2 | 3 |
| y | -5 | -2 | 1 | 4 | 7 | 10 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com