精英家教网 > 初中数学 > 题目详情

【题目】观察下列解题过程:

计算:1+5+52+53+…+524+525的值.

解:设S=1+5+52+53+…+524+525,(1)

则5S=5+52+53+…+525+526(2)

(2)﹣(1),得4S=526﹣1

S=

通过阅读,你一定学会了一种解决问题的方法,请用你学到的方法计算:

(1)1+3+32+33+…+39+310

(2)1+x+x2+x3+…+x99+x100

【答案】(1)S=(2)S=

【解析】

试题分析:这道题是求等比数列前n项的和:

(1)设S=1+3+32+33+…+39+310,等号两边都乘以3可解决;

(2)需要分类讨论:当x=1时,易得结果;当x≠1时,设S=1+x+x2+x3+…+x99+x100等号两边都乘以x可解决.

解:(1)设S=1+3+32+33+…+39+310

则3S=3+32+33+…+39+310+311

②﹣①得2S=311﹣1,

所以S=

(2)由于x为未知数,故需要分类讨论:

当x=1时,1+x+x2+x3+…+x99+x100=1+1+12+…+199+1100=101;

当x≠1时,设S=1+x+x2+x3+…+x99+x100

则xS=x+x2+x3+…+x99+x100+x101

②﹣①得(x﹣1)S=x101﹣1,

所以S=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依此为2468...,顶点依此用A1A2A3A4......表示,则顶点A55的坐标是___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知直线AB经过点A(﹣20),与y轴的正半轴交于点B,且OA2OB

1)求直线AB的函数表达式;

2)点C在直线AB上,且BCAB,点Ey轴上的动点,直线ECx轴于点D,设点E的坐标为(0m)(m2),求点D的坐标(用含m的代数式表示);

3)在(2)的条件下,若CECD12,点F是直线AB上的动点,在直线AC上方的平面内是否存在一点G,使以CGFE为顶点的四边形是菱形?若存在,请求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y= (k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点BBMx轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.

(1)求该反比例函数和一次函数的解析式;

(2)连接MC,求四边形MBOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上有三个点A,B,C,回答下列问题:

(1)若将点B向右移动6个单位后,三个点所表示的数中最小的数是多少?

(2)在数轴上找一点D,使点DA,C两点的距离相等,写出点D表示的数;

(3)在点B左侧找一点E,使点E到点A的距离是到点B的距离的2倍,并写出点E表示的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=kx(k0)沿着y轴向上平移3个单位长度后,与x轴交于点B(3,0),与y轴交于点C,抛物线y=x2+bx+c过点B、C且与x轴的另一个交点为A.

(1)求直线BC及该抛物线的表达式;

(2)设该抛物线的顶点为D,求△DBC的面积;

(3)如果点Fy轴上,且∠CDF=45°,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一条数轴在原点O和点B处各折一下,得到一条折线数轴。图中点A表示-10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位,动点P从点A出发,以2单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速,设运动的时间为t秒,问:

1)动点P从点A运动至点C需要________秒;

2PQ两点相遇时,求出相遇点M所对应的数是多少?

3)求当t为何值时,PO两点在数轴上相距的长度与QB两点在数轴上相距的长度相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先阅读下列材料,再解答下列问题:

题:分解因式:

解:将看成整体,设,则原式=

再将还原,得原式=.

上述解题用到的是整体思想整体思想是数学解题中常用的一种思想方法,请你仿照上面的方法解答下列问题:

(1)因式分解: .

(2)因式分解: .

(3)求证:若为正整数,则式子的值一定是某一个正整数的平方.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图O为坐标原点,四边形ABCD是菱形,A(44)B点在第二象限,AB5ABy轴交于点F,对角线ACy轴于点E

(1)直接写出BC点的坐标;

(2)动点PC点出发以每秒1个单位的速度沿折线段CDA运动,设运动时间为t秒,请用含t的代数式表示EDP的面积;

(3)(2)的条件下,是否存在一点P,使APE沿其一边翻折构成的四边形是菱形?若存在,请直接写出当t为多少秒时存在符合条件的点P;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案