精英家教网 > 初中数学 > 题目详情

【题目】已知△ABC,DAB边上任意一点,DF∥ACBCF,AE∥BC,∠CDE=ABC=∠ACB=α

(1)如图1所示α=60°求证:△DCE是等边三角形

(2)如图2所示α=45°求证=

(3)如图3所示α为任意锐角时请直接写出线段CEDE的数量关系_____.

【答案】1

【解析】试题1)证明△CFD≌△DAE即可解决问题.

2)如图2FGACG.只要证明△CFD∽△DAE推出=再证明CF=AD即可.

3)证明EC=ED即可解决问题.

试题解析:(1)证明如图1中,∵∠ABC=ACB=60°,∴△ABC是等边三角形BC=BADFAC∴∠BFD=BCA=60°,BDF=BAC=60°,∴△BDF是等边三角形BF=BDCF=ADCFD=120°.AEBC∴∠B+∠DAE=180°,∴∠DAE=CFD=120°.∵∠CDA=B+∠BCD=CDE+∠ADE∵∠CDE=B=60°,∴∠FCD=ADE∴△CFD≌△DAEDC=DE∵∠CDE=60°,∴△CDE是等边三角形.

2)证明如图2FGACG∵∠B=ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形DFAC∴∠BDF=BAC=90°,∴∠BFD=45°,DFC=135°.AEBC∴∠BAE+∠B=180°,∴∠DFC=DAE=135°.∵∠CDA=B+∠BCD=CDE+∠ADE∵∠CDE=B=45°,∴∠FCD=ADE∴△CFD∽△DAE=∵四边形ADFG是矩形FC=FGFG=ADCF=AD=

3)解如图3ACDE交于点O

AEBC∴∠EAO=ACB∵∠CDE=ACB∴∠CDO=OAE∵∠COD=EOA∴△COD∽△EOA==∵∠COE=DOA∴△COE∽△DOA∴∠CEO=DAO∵∠CED+∠CDE+∠DCE=180°,BAC+∠B+∠ACB=180°.∵∠CDE=B=ACB∴∠EDC=ECDEC=ED=1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=-x+1和直线y=x-2相交于点P,分别与y轴交于AB两点.

1)求点P的坐标;

2)求△ABP的面积;

3MN分别是直线y=-x+1y=x-2上的两个动点,且MNy轴,若MN=5直接写出MN两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB分别与两坐标轴交于点A(6,0),B(0,12),点C的坐标为(3,0)

(1)求直线AB的解析式;

(2)在线段AB上有一动点P.

过点P分别作x,y轴的垂线,垂足分别为点E,F,若矩形OEPF的面积为16,求点P的坐标.

连结CP,是否存在点P,使ACP与AOB相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自驾游是当今社会一种重要的旅游方式,五一放假期间小明一家人自驾去灵山游玩,下图描述了小明爸爸驾驶的汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是( )

A. 汽车在0~1小时的速度是60千米/时; B. 汽车在2~3小时的速度比0~0.5小时的速度快;

C. 汽车从0.5小时到1.5小时的速度是80千米/时; D. 汽车行驶的平均速度为60千米/时.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:探究函数的图象与性质.小华根据学习函数的经验,对函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:在函数y|x|2中,自变量x可以是任意实数;

Ⅰ如表是yx的几组对应值.

y

3

2

1

0

1

2

3

x

1

0

1

2

1

0

m

①m   

An8),B108)为该函数图象上不同的两点,则n   

Ⅱ如图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;根据函数图象可得:

该函数的最小值为   

该函数的另一条性质是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA1m,球路的最高点B(89),则这个二次函数的表达式为______,小孩将球抛出了约______(精确到0.1m).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点ABC的坐标分别为(0,2)、(-1,0)、(2,0.

1)求直线AB的函数表达式;

2)直线AB上有一点P,使得△PBC的面积等于9,求点P的坐标;

3)设点DABC 点构成平行四边形,直接写出所有符合条件的点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2 E3E4B3……按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3……在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O= 60°, B1C1∥B2C2∥B3C3……,则正方形A2017B2017 C2017 D2017的边长是( )

A. 2016 B. 2017 C. 2016 D. 2017

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.

(1)求这条抛物线的表达式;

(2)求∠ACB的度数;

(3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案