分析 根据已知条件先利用AAS判定△ADC≌△BCE,从而得出AD=BC,AC=BE,所以AB+AD=AB+BC=AC=BE.
解答 解:在△BCE中与AB+AD相等的线段是BE.
理由:∵∠DCE=90°,∠DAC=90°,BE⊥AC于B,
∴∠D+∠DCA=90°,∠DCA+∠ECB=90°.
∴∠D=∠ECB.
∵DC=EC,
在△ADC与△BCE中,
$\left\{\begin{array}{l}{∠DCE=∠DAC}\\{∠D=∠ECB}\\{DC=EC}\end{array}\right.$,
∴△ADC≌△BCE(AAS).
∴AD=BC,AC=BE.
∴AB+AD=AB+BC=AC=BE.
所以与AB+AD相等的线段是BE和AC.
点评 本题考查三角形全等的判定和性质;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.找准对应边,利用相等的线段进行转移是解决本题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | $\sqrt{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com