【题目】如图所示,(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°, 连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;
(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;
(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且∠BAD=∠EAF=,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用表示出直线BE、DF形成的锐角.
【答案】(1)DF=BE且DF⊥BE,证明见解析;(2)数量关系改变,位置关系不变,即DF=kBE,DF⊥BE;(3)不改变.DF=kBE,β=180°-α
【解析】试题分析:(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BA E=∠DAF,所以△FAD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE;
(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°,所以DF与BE的夹角β=180°-α.
试题解析:(1)DF与BE互相垂直且相等.
证明:延长DF分别交AB、BE于点P、G
在正方形ABCD和等腰直角△AEF中
AD=AB,AF=AE,
∠BAD=∠EAF=90°
∴∠FAD=∠EAB
∴△FAD≌△EAB(2分)
∴∠AFD=∠AEB,DF="BE"
∵∠AFD+∠AFG=180°,
∴∠AEG+∠AFG=180°,
∵∠EAF=90°,
∴DF⊥BE
(2)数量关系改变,位置关系不变.DF=kBE,DF⊥BE.
延长DF交EB于点H,
∵AD=kAB,AF="kAE"
∴,
∴
∵∠BAD=∠EAF="a"
∴∠FAD=∠EAB
∴△FAD∽△EAB
∴
∴DF="kBE"
∵△FAD∽△EAB,
∴∠AFD=∠AEB,
∵∠AFD+∠AFH=180°,
∴∠AEH+∠AFH=180°,
∵∠EAF=90°,
∴∠EHF=180°-90°=90°,
∴DF⊥BE
(3)不改变.DF=kBE,β=180°-a.
延长DF交EB的延长线于点H,
∵AD=kAB,AF="kAE"
∴,
∴
∵∠BAD=∠EAF="a"
∴∠FAD=∠EAB
∴△FAD∽△EAB
∴
∴DF=kBE
由△FAD∽△EAB得∠AFD=∠AEB
∵∠AFD+∠AFH=180°
∴∠AEB+∠AFH=180°
∵四边形AEHF的内角和为360°,
∴∠EAF+∠EHF=180°
∵∠EAF=α,∠EHF=β
∴a+β=180°∴β=180°-a
科目:初中数学 来源: 题型:
【题目】如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.
(1)求证:CG是⊙O的切线.
(2)求证:AF=CF.
(3)若sinG=0.6,CF=4,求GA的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B 的坐标为(8,4),反比例函数y=(k>0)的图象分别交边BC、AB 于点D、E,连结DE,△DEF与△DEB关于直线DE对称,当点F恰好落在线段OA上时,则k的值是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y=的图象经过第一象限内的一点A(n,4),过点A作AB⊥x轴于点B,且△AOB的面积为2.
(1)求m和n的值;
(2)若一次函数y=kx+2的图象经过点A,并且与x轴相交于点C,求线段AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴交于A、B两点,交反比例函数于C、D两点,DE⊥x轴于点E,已知C点的坐标是(6,-1),DE=3.
(1)求反比例函数与一次函数的解析式
(2)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值.
(3)求△OAD的面积S△OAD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y= (x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.
(1)求一次函数、反比例函数的解析式;
(2)求证:点C为线段AP的中点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,等边△ABC中D点为AB边上一动点,E为直线AC上一点,将△ADE沿着DE折叠,点A落在直线BC上,对应点为F,若AB=4,BF:FC=1:3,则线段AE的长度为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+mx+n与x轴交于A,B两点,y与轴交于点C,抛物线的对称轴交x轴于点D.已知A(﹣1,0),C(0,3)
(1)求抛物线的解析式;
(2)在抛物线的对称轴上是否存在P点,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由;
(3)在BC上方的抛物线上,是否存在点E,使得△BCE的面积最大?若存在,求出点E的坐标和△BCE的面积最大值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=4,点E、F分别在CD、AD上,CE=DF,BE、CF相交于点G,若图中阴影部分的面积与正方形ABCD的面积之比为3:4,则△BCG的面积为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com