【题目】如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.
(1)求证:AE=DE;
(2)若∠A=100°,∠C=50°,求∠AEB的度数.
【答案】(1)见解析;(2)65°
【解析】
(1)根据BE平分∠ABC,可以得到∠ABE=∠DBE,然后根据题目中的条件即可证明△ABE和△DBE全等,从而可以得到结论成立;
(2)根据三角形内角和求出∠ABC=30°,根据角平分线的定义求出∠CBE=15°,,然后根据外角的性质可以得到∠AEB的度数.
(1)证明:∵BE平分∠ABC,
∴∠ABE=∠DBE,
在△ABE和△DBE中,
,
∴△ABE≌△DBE(SAS),
∴AE=DE;
(2)∵∠A=100°,∠C=50°,
∴∠ABC=30°,
∵BE平分∠ABC,
∴∠ABE=∠DBE,
∴∠CBE=15°,
∴∠AEB=∠C+∠CBE=50°+15°=65°.
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/s秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也同时停止运动,当点P运动__秒时,以P、Q、E、F为顶点的四边形是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,傅家堰中学新修了一个运动场,运动场的两端为半圆形,中间区域为足球场,外面铺设有塑胶环形跑道,四条跑道的宽均为1米.
(1)用含a、b的代数式表示塑胶环形跑道的总面积;
(2)若a=60米,b=20米,每铺1平方米塑胶需120元,求四条跑道铺设塑胶共花费多少元?(π=3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=xm,长方形的面积为ym2,要使长方形的面积最大,其边长x应为( )
A. m B. 6m C. 15m D. m
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图所示,一次函数有y=﹣2x+3的图象与x轴、y轴分别交于A、C两点,二次函数y=x2+bx+c的图象过点C,且与一次函数在第二象限交于另一点B,若AC:CB=1:2,那么这二次函数的顶点坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等.
(1)甲、乙二人每小时各做零件多少个?
(2)甲做几小时与乙做4小时所做机械零件数相等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=与y轴交于(0,3)点.
(1)求出m的值并在给出的直角坐标系中画出这条抛物线;
(2)根据图像回答下列问题:
①方程的根是多少?
②x取什么值时, ?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.
(1)试说明DF是⊙O的切线;
(2)若AC=3AE,求tanC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABD≌△CDB,且AB,CD是对应边.下面四个结论中不正确的是( )
A. △ABD和△CDB的面积相等B. △ABD和△CDB的周长相等
C. ∠A+∠ABD=∠C+∠CBDD. AD∥BC,且AD=BC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com