精英家教网 > 初中数学 > 题目详情

【题目】某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为5类,每车乘坐1人、2人、3人、4人、5人分别记为ABCDE,由调查所得数据绘制了如图所示的不完整的统计图表.

类别

频率

A

m

B

0.35

C

0.20

D

n

E

0.05

(1)求本次调查的小型汽车数量及mn的值;

(2)补全频数分布直方图;

(3)若某时段通过该路段的小型汽车数量为5000辆,请你估计其中每车只乘坐1人的小型汽车数量.

【答案】(1)本次调查的小型汽车数量为160辆,m0.3n0.1(2)见解析;(3)估计其中每车只乘坐1人的小型汽车数量为1500辆.

【解析】

(1)C类别数量及其对应的频率可得总数量,再由频率=频数÷总数量可得mn的值;

(2)用总数量乘以BD对应的频率求得其人数,从而补全图形;

(3)利用样本估计总体思想求解可得.

(1)本次调查的小型汽车数量为32÷0.2160()

m48÷1600.3n1(0.3+0.35+0.20+0.05)0.1

(2)B类小汽车的数量为160×0.3556D类小汽车的数量为0.1×16016

补全图形如下:

(3)估计其中每车只乘坐1人的小型汽车数量为5000×0.31500()

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,AB=5BC=4,点EF分别在边BCAC上,沿EF所在的直线折叠∠C,使点C的对应点D恰好落在边AB上,若△EFC和△ABC相似,则BD的长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax-12+kx轴两个交点间的距离为2,将抛物线y=ax-12+k向上平移n个单位,平移后的抛物线经过点(mn),则m的值是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数与x轴,y轴的交点分别是A(﹣40),B02).与反比例函数的图象交于点Q,反比例函数图象上有一点P满足:PAx轴;POO为坐标原点),则四边形PAQO的面积为(  )

A.7B.10C.4+2D.42

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是某浴室花洒实景图,图2是该花洒的侧面示意图.已知活动调节点B可以上下调整高度,离地面CD的距离BC160cm.设花洒臂与墙面的夹角为α,可以扭动花洒臂调整角度,且花洒臂长AB30cm.假设水柱AE垂直AB直线喷射,小华在离墙面距离CD120cm处淋浴.

1)当α30°时,水柱正好落在小华的头顶上,求小华的身高DE

2)如果小华要洗脚,需要调整水柱AE,使点E与点D重合,调整的方式有两种:

其他条件不变,只要把活动调节点B向下移动即可,移动的距离BF与小华的身高DE有什么数量关系?直接写出你的结论;

活动调节点B不动,只要调整α的大小,在图3中,试求α的度数.

(参考数据:1.73sin8.6°≈0.15sin36.9°≈0.60tan36.9°≈0.75

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图像如图所示,则超过500元的部分可以享受的优惠是( )

A. 打六折B. 打七折C. 打八折D. 打九折

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,二次函数y=ax2+bx+c的图象与x轴分别交于AB两点,与y轴交于点C.若tanABC=3,一元二次方程ax2+bx+c=0的两根为﹣82

1)求二次函数的解析式;

2)直线l绕点AAB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点DPAD的中点.

①求点P的运动路程;

②如图2,过点DDE垂直x轴于点E,作DFAC所在直线于点F,连结PEPF,在l运动过程中,∠EPF的大小是否改变?请说明理由;

3)在(2)的条件下,连结EF,求PEF周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系h20t5t2.下列叙述正确的是(  )

A. 小球的飞行高度不能达到15m

B. 小球的飞行高度可以达到25m

C. 小球从飞出到落地要用时4s

D. 小球飞出1s时的飞行高度为10m

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.

1)当每吨售价是240元时,计算此时的月销售量;

2)在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元?

3)小静说:“当月利润最大时,月销售额也最大.”你认为对吗?请说明理由.

查看答案和解析>>

同步练习册答案