【题目】如图,已知∠BAC的平分线与BC的垂直平分线PQ相交于点P,PM⊥AC,PN⊥AB,垂足分别为M、N,AB=5,AC=11,则CM的长度为( )
A. 4B. 3C. 2D. 1
【答案】B
【解析】
连接PB,PC,根据角平分线性质求出PM=PN,根据线段垂直平分线求出PB=PC,根据HL证Rt△PMC≌Rt△PNB,Rt△PAN≌Rt△PAM,即可得出答案.
证明:连接PB,PC,
∵AP是∠BAC的平分线,PN⊥AB,PM⊥AC,
∴PM=PN,∠PMC=∠PNB=90°,
∵P在BC的垂直平分线上,
∴PC=PB,
在Rt△PMC和Rt△PNB中
,
∴Rt△PMC≌Rt△PNB(HL),
∴BN=CM.
在Rt△PAN后Rt△PAM中,
,
∴Rt△PAN≌Rt△PAM,
∴AM=AN,
∴AB+AC=AM+CM+AN-BN=2AM=16,
∴AM=8,CM=AC-AM=11-8=3,
故选:B.
科目:初中数学 来源: 题型:
【题目】如图1,已知a∥b,点A、B在直线a上,点C、D在直线b上,且AD⊥BC于E.
(1)求证:∠ABC+∠ADC=90°;
(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;
(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(满分10分)有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.
(1)请你求出摸出的这两个数的积为6的概率;
(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC的周长为21cm,AB=6cm,BC边上中线AD=5cm,△ACD周长为16cm,则AC的长为__________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,,两地被大山阻隔,由地到地需要绕行地,若打通穿山隧道,建成,两地的直达高铁,可以缩短从地到地的路程.已知:,,公里,求隧道打通后与打通前相比,从地到地的路程将约缩短多少公里?(参考数据:,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知在平面直角坐标系中点A(a,b)点B(a,0),且满足|2a-b|+(b-4)2=0.
(1)求点A、点B的坐标;
(2)已知点C(0,b),点P从B点出发沿x轴负方向以1个单位每秒的速度移动.同时点Q从C点出发,沿y轴负方向以2个单位每秒的速度移动,某一时刻,如图所示且S阴= S四边形OCAB,求点P移动的时间;
(3)在(2)的条件下,AQ交x轴于M,作∠ACO,∠AMB的角平分线交于点N,判断 是否为定值,若是定值求其值;若不是定值,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】七年级进行法律知识竞赛,共有30道题,答对一道题得4分,不答或答错一道题扣2分.
(1)小红同学参加了竞赛,成绩是90分,请问小红在竞赛中答对了多少道题?
(2)小明也参加了竞赛,考完后他说:“这次竞赛我一定能拿到100分.”请问小明有没有可能拿到100分?试用方程的知识来说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义一次函数y=px+q的特征数为[p,q].如:y=3x-1的特征数是[3,-1]
(1)若某正比例函数的特征数是[k+2, ],求k的值.
(2)在平面直角坐标系中,有两点A(-m,0),B(0,-2m),且△OAB的面积为4(O为原点),求过A、B两点的一次函数的特征数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com