精英家教网 > 初中数学 > 题目详情

【题目】如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①abc<0;② 2a>b;③b=a+c;④8a+c>0;⑤ax2+bx+c=0的两根分别为﹣3和1.其中正确的命题有( )

A. 2个 B. 3个 C. 4个 D. 5个

【答案】C

【解析】

根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴为x=-1,确定2ab的关系,根据对称轴和图象确定y>0y<0时,x的范围,确定代数式的符号,根据抛物线与x轴的交点坐标,求出ax2+bx+c=0的两根.

①∵开口向上,∴a>0,对称轴在y轴的左侧,b>0,抛物线与y轴交于负半轴,c<0,abc<0∴①正确;

-=-1,b=2a,②错误;

③当x=1时,y=0,a+b+c=0,③正确;

④当x=2时,y>0,4a+2b+c>0,8a+c>0,④正确;

⑤∵对称轴为x=-1,抛物线与x轴的交点坐标分别为(-3,0),(1,0),ax2+bx+c=0的两根分别为-31,⑤正确

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将一块含有45°的三角板ABC的顶点A放在⊙O上,且AC⊙O相切于点A(如图1),将△ABC从点A开始,绕着点A顺时针旋转,设旋转角为αα135°),旋转后,ACAB分别与⊙O交于点EF,连接EF(如图2).已知AC=8⊙O的半径为4

1)在旋转过程中,有以下几个量:EF的长;的长;③∠AFE的度数;OEF的距离.其中不变的量是___________________(填序号);

2)当α________°时,BC⊙O相切(直接写出答案);

3)当BC⊙O相切时,求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘船由A港沿北偏东60°方向航行10kmB港,然后再沿北偏西30°方向航行10kmC港.

1)求AC两港之间的距离(结果保留到0.1km,参考数据:≈1.414≈1.732);

2)确定C港在A港的什么方向.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先来看一个有趣的现象:.这样根号里的因数2经过适当地演变,竟到了根号的外面,我们不妨把这种现象称为“穿墙”,具有这一性质的数还有许多,如:.

1)猜想:______,并验证你的猜想.

2)你能只用一个正整数来表示含有上述规律的等式吗?

3)请你另外再写出1个具有“穿墙”性质的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(14分)如图1已知点B(0,6),点C为x轴上一动点连接BC,△ODC和△EBC都是等边三角形.

  

  图1          图2           图3

(1)求证:DE=BO;

(2)如图2当点D恰好落在BC上时.

求OC的长及点E的坐标;

在x轴上是否存在点P使△PEC为等腰三角形?若存在写出点P的坐标;若不存在说明理由;

如图3点M是线段BC上的动点(点B,C除外)过点M作MG⊥BE于点G,MH⊥CE于点H当点M运动时,MH+MG的值是否发生变化?若不会变化直接写出MH+MG的值;若会变化简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDAB相交,∠BAC=40°.

(1)如图1,若D为弧AB的中点,求∠ABC和∠ABD的度数;

(2)如图2,过点D作⊙O的切线,与AB的延长线交于点P,若DPAC,求∠OCD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016黑龙江省齐齐哈尔市)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)

(1)画出将ABC向上平移1个单位长度,再向右平移5个单位长度后得到的A1B1C1

(2)画出将ABC绕原点O顺时针方向旋转90°得到A2B2O

(3)在x轴上存在一点P,满足点PA1与点A2距离之和最小,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知甲乙两地之间的距离为810米,小明和小天分别从甲乙两地出发,匀速相向而行,已知小明先出发1分钟后,小天再出发,两人在甲乙之间的丙地相遇,此时,小明发现有小学同学也在丙地,于是聊了一会儿,随后以原来速度的倍返回甲地,小天相遇后继续以原速向甲地前行,到达甲地后立即原速返回,直至再次与小明相遇.已知在整个过程中,小明、小天两人之间的距离(米与小明出发的时间(分钟)之间的关系如图所示,则在第二次相遇时两人距离乙地______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班“数学兴趣小组”对函数y+x的图象与性质进行了探究,探究过程如下,请补充完整.

(1)函数y+x的自变量x的取值范围是   

(2)下表是yx的几组对应值.

x

3

2

1

0

2

3

4

5

y

1

3

m

m的值;

(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;

(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(23),结合函数的图象,写出该函数的其它性质(一条即可)   

(5)小明发现,该函数的图象关于点(      )成中心对称;

该函数的图象与一条垂直于x轴的直线无交点,则这条直线为   

直线ym与该函数的图象无交点,则m的取值范围为   

查看答案和解析>>

同步练习册答案