【题目】如图,一钢架NAM中,∠A=15°,现要在角的内部焊上等长的钢条(相邻钢条首尾相接)来加固钢架.如AP1=P1P2=P2P3=…,则这样的钢条最多只能焊上( )根.
A.4B.5C.6D.7
【答案】B
【解析】
由于P1A=P1P2,利用三角形外角性质,易得∠2,而P2P1=P2P3,又易求∠P1P2P3=120°,以此类推,易求∠P3P5P6=90°,根据邻补角性质可知∠P6P5M=90°,若再焊接,那么出来的三角形的底角就有两个是90°,不符合三角形内角和定理,故只能焊接5根.
如图,
∵P1A=P1P2,
∴∠A=∠1=15°,
∴∠2=30°,
∵P2P1=P2P3,
∴∠3=∠2=30°,
∴∠P1P2P3=120°,
…
易知∠6=∠7=60°,∠8=∠9=75°,
∴∠P4P5P6=30°,
∴∠P3P5P6=90°,
∴∠P6P5M=90°,
那么第6个三角形将有两个底角等于90°,不符合三角形内角和定理,故只能焊5根.
故选:B.
科目:初中数学 来源: 题型:
【题目】已知:如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(3,0),与y轴交于点C.过点C作CD∥x轴,交抛物线的对称轴于点D.
(1)求该抛物线的解析式;
(2)若将该抛物线向下平移m个单位,使其顶点落在D点,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知抛物线y=﹣x2﹣4x+5交x轴于点A、B两点(点A在点B的左侧),交y轴于点C,点D为抛物线的顶点,连接AD.
(1)求直线AD的解析式.
(2)点E(m,0)、F(m+1,0)为x轴上两点,其中(﹣5<m<﹣3.5)EE′、FF′分别平行于y轴,交抛物线于点E′和F′,交AD于点M、N,当ME′+NF′的值最大时,在y轴上找一点R,使得|RE′﹣RF′|值最大,请求出点R的坐标及|RE′﹣RF′|的最大值.
(3)如图2,在抛物线上是否存在点P,使得△PAC是以AC为底边的等腰三角形,若存在,请出点P的坐标及△PAC的面积,若不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.
(1)求y与x之间的函数关系式;
(2)直接写出当x>0时,不等式x+b>的解集;
(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,
OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是【 】
A.(-2,3) B.(2,-3) C.(3,-2)或(-2,3) D.(-2,3)或(2,-3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的周长为30cm,把△ABC的边AC对折,使顶点A和C重合,折痕交BC边于点D,交AC边于点E,若△ABD的周长是22cm,则AE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°
(1)若点C在优弧BD上,求∠ACD的大小;
(2)若点C在劣弧BD上,直接写出∠ACD的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.
(1)求OC的长;
(2)求四边形OBEC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com