精英家教网 > 初中数学 > 题目详情

【题目】如图,菱形ABCD中,对角线ACBD相交于点OAC10BD4,动点P在边AB上运动,以点O为圆心,OP为半径作OCQO于点Q,则在点P运动过程中,CQ的长的最大值为_______

【答案】

【解析】

首先连接OQ,由CQ切⊙O于点Q,可得当OQ最小时,CQ最大,即当OPAB时,CQ最大,然后由菱形与直角三角形的性质求得OP的长,继而求得答案.

解:连接OQ

CQ切⊙O于点Q

OQCQ

∴∠CQO=90°

CQ=

∵四边形ABCD是菱形,AC=10BD=4

ACBDOA=OC=AC=5OB=OD=BD=2

AB==

OC是定值

即当OQ最小时,CQ最大

∴当OP最小时,CQ最大

∴当OPAB时,CQ最大

RtAOB中,OP=

OQ=OP=

CQ===

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知的直径,的弦.

1)如图①,连接,若,求的大小;


2)如图②;是半圆弧的中点,的延长线与过点的切线相交于点,若,求的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的边OAOC分别在x轴、y轴上,点B 的坐标为(8,4),反比例函数y=(k>0)的图象分别交边BCAB 于点DE,连结DE,△DEF与△DEB关于直线DE对称,当点F恰好落在线段OA上时,则k的值是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线AC的垂直平分线分别交BCAD于点F E,垂足为O

(1)求证:四边形AFCE为菱形;

(2)AB=4BC=8,求菱形AFCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于点,点,与y轴交于点C,且过点.点PQ是抛物线上的动点.

(1)求抛物线的解析式;

(2)当点P在直线OD下方时,求面积的最大值.

(3)直线OQ与线段BC相交于点E,当相似时,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在某次商业足球比赛中,门票销售单位对团体购买门票实行优惠,决定在原定票价基础上每张降价100元,这样按原定票价需花费14 000元购买的门票张数,现在只花费了10 500元.

(1)求每张门票的原定票价;

(2)根据实际情况,组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】芜湖市某医院计划选购AB两种防护服.已知A防护服每件价格是B防护服每件价格的2倍,用80000元单独购买A防护服比用80000元单独购买B防护服要少50件.如果该医院计划购买B防护服的件数比购买A防护服件数的2倍多8件,且用于购买AB两种防护服的总经费不超过320000元,那么该医院最多可以购买多少件B防护服?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是(  )

A. ﹣2<m< B. ﹣3<m<﹣ C. ﹣3<m<﹣2 D. ﹣3<m<﹣

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:给定一个矩形,如果存在另一个矩形,它的周长和面积分别是已知矩形的周长和面积的一半,则这个矩形是给定矩形的减半矩形.如图,矩形是矩形减半矩形.

请你解决下列问题:

1)当矩形的长和宽分别为时,它是否存在减半矩形?请作出判断,并说明理由.

2)边长为的正方形存在减半正方形吗?如果存在,求出减半正方形的边长;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案