考点:垂径定理,勾股定理
专题:计算题
分析:作OM⊥AB于M,ON⊥CD于N,如图,设⊙O的半径为r,根据垂径定理得AM=BM,CN=DN,再表示出PA=AM-PM=MB-PM,PB=PM+BM,PD=DN-PN=CN-PN,PC=PN+CN,所以PA2+PB2+PC2+PD2,整理得2(BM2+PM2+CN2+PN2),接着利用四边形OMPN为矩形得到PN=OM,PM=ON,则PA2+PB2+PC2+PD2=2(BM2+ON2+CN2+OM2),然后根据勾股定理得到BM2+OM2=OB2=r2,CN2+ON2=OC2=r2,于是PA2+PB2+PC2+PD2=2(r2+r2)=4r2.
解答:解:作OM⊥AB于M,ON⊥CD于N,如图,设⊙O的半径为r,

则AM=BM,CN=DN,
∵PA=AM-PM=MB-PM,PB=PM+BM,
PD=DN-PN=CN-PN,PC=PN+CN,
∴PA
2+PB
2+PC
2+PD
2=(MB-PM)
2+(PM+BM)
2+(CN-PN)
2+(PN+CN)
2=2(BM
2+PM
2+CN
2+PN
2),
∵AB⊥CD,
∴四边形OMPN为矩形,
∴PN=OM,PM=ON,
∴PA
2+PB
2+PC
2+PD
2=2(BM
2+PM
2+CN
2+PN
2)=2(BM
2+ON
2+CN
2+OM
2),
而BM
2+OM
2=OB
2=r
2,CN
2+ON
2=OC
2=r
2,
∴PA
2+PB
2+PC
2+PD
2=2(r
2+r
2)=4r
2.
点评:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.