【题目】已知,如图△ABC中,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.
(1)猜想:DF与AE的关系是 ;
(2)试说明你猜想的正确性.
【答案】(1)DF与AE互相平分;(2)证明见解析
【解析】
试题分析:(1)DF与AE互相平分.
(2)由已知可得四边形BDFE是平行四边形,从而可得BD=EF,由中点的定义可得AD=BD,再根据平行线的性质即可得到∠ADO=∠EFO,∠DAO=∠FEO,从而可利用ASA判定△ADO≌△EFO,根据全等三角形的对应边相等即可得到OD=OF,OA=OE,即得到AE与DF互相平分,或连接AF、DE,然后证明四边形DEFA是平行四边形,再根据平行四边形的对角线互相平分证明.
解:(1)DF与AE互相平分;
∵D是AB的中点,
∴AD=BD,
∵EF∥AB,DF∥BE,
∴四边形BEFD是平行四边形,
∴EF=BD=AD,
∵EF∥AB,
∴EF∥AD,
∵EF∥AD,EF=AD,
∴四边形AFED是平行四边形,
∴DF、AE是平行四边形AFED的对角线,
∴DF、AE互相平分;
(2)∵EF∥AB,DF∥BE,
∴四边形BDFE是平行四边形,
∴BD=EF,
∵D是AB的中点,
∴AD=BD,
∴EF=AD,
∵EF∥AB,
∴∠ADO=∠EFO,∠DAO=∠FEO,
在△ADO和△EFO中,
∵,
∴△ADO≌△EFO,
∴OD=OF,OA=OE,
即AE与DF互相平分;
或连接AF、DE.
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AM是⊙O的直径,过点A作AP⊥AM.
(1)求证:∠PAC=∠ABC.
(2)连接PB与AC交于点D,与⊙O交于点E,F为BD上的一点,若M为BC的中点,且∠DCF=∠P,求证:=.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.
(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点P在第三象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )
A. (-4,-3) B. (-3,4) C. (-3,-4) D. (3,-4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法中正确的个数是( )
①整数是指正整数和负整数;②任何数的绝对值都是正数;③零是最小的整数;④一个负数的绝对值一定是正数。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.
(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?
(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知ABCD中,以AB为斜边在ABCD内作等腰直角△ABE,且AE=AD,连接DE,过E作EF⊥DE交AB于F交DC于G,且∠AEF=15°
(1)若EF=,求AB的长.
(2)求证:2GE+EF=AB.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com