精英家教网 > 初中数学 > 题目详情

【题目】如图,码头在码头的正东方向,两个码头之间的距离为10海里,今有一货船由码头出发,沿北偏西60°方向航行到达小岛处,此时测得码头在南偏东45°方向,则码头与小岛的距离为_________海里(结果保留根号).

【答案】

【解析】

Rt△DCB中,可得CD的长,在Rt△CAD中,由30°角所对直角边等于斜边的一边,可得答案.

CD⊥ABAB延长线于点D∠D=90°,如图,

由题意,得∠DCB=45°∠CAD=90°60°=30°AB=10海里,

CD=x海里,

Rt△DCB中,tan∠DCB=tan45°==1BD=xAD=AB+BD=10+x

tan30°=,解得x=

∵∠CAD=30°∠CDA=90°∴AC=2CD=(海里),

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】事业单位人员编制连进必考,现一事业单位需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方而进行量化考核.甲、乙、丙各项得分如下表:

笔试

面试

体能

84

80

88

94

92

69

81

84

78

1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;

2)该单位规定:笔试、面试、体能分分别不得低于80分,80分,70分,并按60%30%10%的比例计入总分.根据规定,请你说明谁将被录用.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BFCE,垂足为F,则tanFBC的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现:如图1,在等边中,点边上一动点,于点,将绕点顺时针旋转得到,连接.则的数量关系是_____的度数为______

(2)拓展探究:如图2,在中,,点边上一动点,于点,当∠ADF=∠ACF=90°时,求的值.

(3)解决问题:如图3,在中,,点的延长线上一点,过点的延长线于点,直接写出当的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的,已知甲玩具的进货单价比乙玩具的进货单价多1元.

1)求:甲、乙玩具的进货单价各是多少元?

2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年的315日是国际消费者权益日,许多家居商城都会利用这个契机进行打折促销活动.甲卖家的某款沙发每套成本为5000元,在标价8000元的基础上打9折销售.

1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%

2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为.乙卖家也销售相同的沙发,其成本、标价与甲卖家一致,以前每周可售出8套,现乙卖家先将标价提高,再大幅降价元,使得这款沙发在315日那一天卖出的数量就比原来一周卖出的数量增加了,这样一天的利润达到了50000元,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,直线交坐标轴于AC两点,抛物线AC两点.

1)求抛物线的解析式;

2)若点P为抛物线位于第三象限上一动点,连接PAPC,试问△PAC是否存在最大值,若存在,请求出△APC取最大值以及点P的坐标,若不存在,请说明理由;

3)点M为抛物线上一点,点N为抛物线对称轴上一点,若△NMC是以∠NMC为直角的等腰直角三角形,请直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系xOy中,点Ax轴的正半轴上,点BC在第一象限,且四边形OABC是平行四边形,ABsinB,反比例函数的图象经过点C以及边AB的中点D,则四边形OABC的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将BDE沿直线DE折叠,得到B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是(  )

A. ADF≌△CGE

B. B′FG的周长是一个定值

C. 四边形FOEC的面积是一个定值

D. 四边形OGB'F的面积是一个定值

查看答案和解析>>

同步练习册答案