【题目】如图,已知AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,∠M=∠D.
(1)判断BC、MD的位置关系,并说明理由;
(2)若AE=16,BE=4,求线段CD的长;
(3)若MD恰好经过圆心O,求∠D的度数.
【答案】(1)BC∥MD;理由见解析;(2)16;(3)30°.
【解析】
试题分析:(1)根据圆周角定理可得出∠M=∠D=∠C=∠CBM,由此即可得出结论;
(2)先根据AE=16,BE=4得出OB的长,进而得出OE的长,连接OC,根据勾股定理得出CE的长,进而得出结论;
(3)根据题意画出图形,根据圆周角定理可知,∠M=∠BOD,由∠M=∠D可知∠D=∠BOD,故可得出∠D的度数.
试题解析:(1)BC∥MD.
理由:∵∠M=∠D,∠M=∠C,∠D=∠CBM,
∴∠M=∠D=∠C=∠CBM,
∴BC∥MD;
(2)∵AE=16,BE=4,
∴OB==10,
∴OE=10-4=6,
连接OC,
∵CD⊥AB,
∴CE=CD,
在Rt△OCE中,
∵OE2+CE2=OC2,即62+CE2=102,解得CE=8,
∴CD=2CE=16;
(3)如图2,
∵∠M=∠BOD,∠M=∠D,
∴∠D=∠BOD,
∵AB⊥CD,
∴∠D=×90°=30°.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.
(1)求证: BE=CF;
(2)请探究旋转角等于多少度时,四边形ABDF为菱形,证明你的结论;
(3)在(2)的条件下,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校计划开设四门选修课:乐器、舞蹈、绘画、书法.为提前了解学生的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)本次调查的学生共有 人,在扇形统计图中,m的值是 ;
(2)将条形统计图补充完整;
(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+1的顶点为D,与x轴正半轴交于A、B两点,A在B左,与y轴正半轴交于点C,当△ABD和△OBC均为等腰直角三角形(O为坐标原点)时,b的值为( )
A. 2 B. ﹣2或﹣4 C. ﹣2 D. ﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点M的坐标是(5,4),⊙M与y轴相切于点C,与x轴相交于A,B两点.
(1)请直接写出A,B,C三点的坐标,并求出过这三点的抛物线解析式;
(2)设(1)中抛物线解析式的顶点为E,
求证:直线EA与⊙M相切;
(3)在抛物线的对称轴上,是否存在点P,且点P在x轴的上方,使△PBC是等腰三角形?
如果存在,请求出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com