(本题满分10分)(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE,
填空:①∠AEB的度数为 ;
②线段AD、BE之间的数量关系是 .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=900, 点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.
![]()
![]()
(3)解决问题如图3,在正方形ABCD中,CD=
.若点P满足PD=1,且∠BPD=900,请直接写出点A到BP的距离.
![]()
(1)①60;②AD=BE;(2)∠AEB=900;AE=2CM+BE,理由见试题解析;(3)
或
.
【解析】
试题分析:(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.
(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.
(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=90°可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.
试题解析:(1)①如图1,
∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.
在△ACD和△BCE中,∵AC=BC,∠ACD=∠BCE,CD=CE,
∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC.
∵△DCE为等边三角形,∴∠CDE=∠CED=60°.
∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC﹣∠CED=60°.
故答案为:60°.
②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.
(2)∠AEB=90°,AE=BE+2CM.
理由:如图2,
∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°,∴∠ACD=∠BCE.
在△ACD和△BCE中,∵CA=CB,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS),
∴AD=BE,∠ADC=∠BEC.
∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.
∵点A,D,E在同一直线上,∴∠ADC=135°,∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°.
∵CD=CE,CM⊥DE,∴DM=ME,
∵∠DCE=90°,∴DM=ME=CM,∴AE=AD+DE=BE+2CM.
(3)∵PD=1,∴点P在以点D为圆心,1为半径的圆上.
∵∠BPD=90°,∴点P在以BD为直径的圆上,∴点P是这两圆的交点.
①当点P在如图3①所示位置时,
![]()
连接PD、PB、PA,作AH⊥BP,垂足为H,
过点A作AE⊥AP,交BP于点E,如图3①.
∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=
,∠BAD=90°,∴BD=2.
∵DP=1,∴BP=
.
∵A、P、D、B四点共圆,∴∠APB=∠ADB=45°,∴△PAE是等腰直角三角形.
又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.
∴
=2AH+1,∴AH=
;
②当点P在如图3②所示位置时,
连接PD、PB、PA,作AH⊥BP,垂足为H,
过点A作AE⊥AP,交PB的延长线于点E,如图3②.
同理可得:BP=2AH﹣PD,∴
=2AH﹣1,∴AH=
.
综上所述:点A到BP的距离为
或
.
![]()
考点:1.圆的综合题;2.全等三角形的判定与性质;3.正方形的性质;4.圆周角定理.
科目:初中数学 来源:2014-2015学年广东省云浮市郁南县三八年级上学期期中联考数学试卷(解析版) 题型:选择题
如图,已知点P到AE,AD,BC的距离相等,则下列说法:
①点P在∠BAC的平分线上;
②点P在∠CBE的平分线上;
③点P在∠BCD的平分线上;
④点P是∠BAC,∠CBE,∠BCD的平分线的交点,
其中正确的是( ).
![]()
A.①②③④ B.①②③ C.④ D.②③
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省无锡市九年级上学期期中考试数学试卷(解析版) 题型:解答题
(本题满分12分)如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t >0)秒.
![]()
(1)当点Q从B点向A点运动时(未到达A点),若△APQ ∽△ABC,求t的值;
(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.
①当直线l经过点A时,射线QP交AD边于点E,求AE的长;
②是否存在t的值,使得直线l经过点B?若存在,请求出所有t的值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省无锡市九年级上学期期中考试数学试卷(解析版) 题型:选择题
如图,已知在Rt△ABC中,AB=AC=2,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形依次进行下去,则第n个内接正方形的边长为( )
![]()
A.
·(
)n B.![]()
·(
)n
C.
·(
)n-1 D.![]()
·(
)n-
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省无锡市九年级上学期期中考试数学试卷(解析版) 题型:选择题
如图,在△ABC中,DE∥BC,若
=
,DE=4,则BC的值为( )
![]()
A.9 B.10 C. 11 D.12
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省无锡市九年级上学期期中考试数学试卷(解析版) 题型:解答题
(本题满分8分)已知关于x的一元二次方程
,其中a、b、c分别为△ABC三边的长.
(1)如果
是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;
(3)如果△ABC是等边三角形,试求这个一元二次方程的根.
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省无锡市九年级上学期期中考试数学试卷(解析版) 题型:填空题
已知圆锥的母线长为5cm,底面圆的半径长为3cm,则此圆锥的侧面积是 cm2
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省无锡市八年级上学期期中考试数学试卷(解析版) 题型:解答题
(本题8分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
![]()
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数;
查看答案和解析>>
科目:初中数学 来源:2014-2015学年江苏省无锡市滨湖区九年级上学期期中考试数学试卷(解析版) 题型:选择题
如图,在直角坐标系中放置一个边长为
的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A第三次回到x 轴上时,点A运动的路线与x轴围成的图形的面积和为 …( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com