精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ACB90°,将ABC绕顶点C逆时针旋转得到ABCMBC的中点,PAB的中点,连接PM,若BC2,∠BAC30°,则线段PM的最大值是_____

【答案】3

【解析】

连接PC.先依据直角三角形斜边上中线的性质求出PC2,再依据三角形的三边关系可得到PMPC+CM,由此可得到PM的最大值为PC+CM

解:如图连接PC

RtABC中,∵∠A30°BC2

AB4

根据旋转不变性可知,ABAB4

APPB

PC AB2

CMBM1

又∵PMPC+CM,即PM≤3

PM的最大值为3(此时PCM共线).

故答案为:3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,平分,且D延长线上的一点,,过D,垂足为G.下列结论:①;②;③;④,其中正确的是(  )

A. ①②③B. ①③④C. ①②④D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC绕点A按逆时针方向旋转120°得到ABC(点B的对应点是点B',点C的对应点是点C'),连接BB,若ACBB,则∠C'AB的度数为(  )

A. 15°B. 30°C. 45°D. 60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列条件中,①∠A+B=C ②∠ABC=123 ③∠A=B=C

④∠A=B=2C⑤∠A=2B=3C,能确定ABC为直角三角形的条件有(   )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,AB6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2,以此类推,第n次平移将长方形An1Bn1Cn1Dn1沿An1Bn1的方向向右平移5个单位,得到长方形AnBnCnDnn2),则ABn长为

A. 5n6B. 5n1C. 5n4D. 5n3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题的提出:n个平面最多可以把空间分割成多少个部分?
问题的转化:由n上面问题比较复杂,所以我们先来研究跟它类似的一个较简单的问题:
n条直线最多可以把平面分割成多少个部分?
如图1,很明显,平面中画出1条直线时,会得到1+1=2个部分;所以,1条直线最多可以把平面分割成2个部分;
如图2,平面中画出第2条直线时,新增的一条直线与已知的1条直线最多有1个交点,这个交点会把新增的这条直线分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2条直线最多可以把平面分割成4个部分;
如图3,平面中画出第3条直线时,新增的一条直线与已知的2条直线最多有2个交点,这2个交点会把新增的这条直线分成3部分,从而多出3个部分,即总共会得到1+1+2+3=7个部分,所以,3条直线最多可以把平面分割成7个部分;
平面中画出第4条直线时,新增的一条直线与已知的3条直线最多有3个交点,这3个交点会把新增的这条直线分成4部分,从而多出4个部分,即总共会得到1+1+2+3+4=11个部分,所以,4条直线最多可以把平面分割成11个部分;…

(1)请你仿照前面的推导过程,写出“5条直线最多可以把平面分割成多少个部分”的推导过程(只写推导过程,不画图);
(2)根据递推规律用n的代数式填空:n条直线最多可以把平面分割成个部分.
问题的解决:借助前面的研究,我们继续开头的问题;n个平面最多可以把空间分割成多少个部分?
首先,很明显,空间中画出1个平面时,会得到1+1=2个部分;所以,1个平面最多可以把空间分割成2个部分;
空间中有2个平面时,新增的一个平面与已知的1个平面最多有1条交线,这1条交线会把新增的这个平面最多分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2个平面最多可以把空间分割成4个部分;
空间中有3个平面时,新增的一个平面与已知的2个平面最多有2条交线,这2条交线会把新增的这个平面最多分成4部分,从而多出4个部分,即总共会得到1+1+2+4=8个部分,所以,3个平面最多可以把空间分割成8个部分;
空间中有4个平面时,新增的一个平面与已知的3个平面最多有3条交线,这3条交线会把新增的这个平面最多分成7部分,从而多出7个部分,即总共会得到1+1+2+4+7=15个部分,所以,4个平面最多可以把空间分割成15个部分;
空间中有5个平面时,新增的一个平面与已知的4个平面最多有4条交线,这4条交线会把新增的这个平面最多分成11部分,而从多出11个部分,即总共会得到1+1+2+4+7+11=26个部分,所以,5个平面最多可以把空间分割成26个部分;…
(3)请你仿照前面的推导过程,写出“6个平面最多可以把空间分割成多少个部分?”的推导过程(只写推导过程,不画图);
(4)根据递推规律填写结果:10个平面最多可以把空间分割成个部分;
(5)设n个平面最多可以把空间分割成Sn个部分,设n﹣1个平面最多可以把空间分割成Sn1个部分,前面的递推规律可以用Sn1和n的代数式表示Sn;这个等式是Sn=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角形的内切圆的切点将该圆周分为5:9:10三条弧,则此三角形的最小的内角为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料,回答问题
一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20 海里的圆形区域(包括边界)都属台风区,当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100海里.

(1)若这艘轮船自A处按原速度和方向继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,说明理由;
(2)现轮船自A处立即提高船速,向位于北偏东60°方向,相距60海里的D港驶去,为使台风到来之前,到达D港,问船速至少应提高多少(提高的船速取整数, ≈3.6)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EFABFCDABD,点AC边上,且∠1=2=

(1)判断DGBC的位置关系,并加以证明;

(2)若∠AGD=,试求∠DCG的度数.

查看答案和解析>>

同步练习册答案