精英家教网 > 初中数学 > 题目详情

【题目】我市茶叶专卖店销售某品牌茶叶,其进价为每千克240元,按每千克400元出售,平均每周可售出200千克,后来经过市场调查发现,单价每降低10元,则平均每周的销售量可增加40千克,若该专卖店销售这种品牌茶叶要想平均每周获利41600元,求每千克茶叶应降价多少元?

【答案】每千克茶叶应降价30元或80

【解析】

设每千克茶叶应降价x元,由题意,得: (400-240-x) (200+) =41600,解方程可得.

解:设每千克茶叶应降价x元,则平均每周可售出(200+) 千克,

由题意,得: (400-240-x) (200+) =41600,

整理,得: x2-110x+2400=0

解得: x1=30, x2=80.

答:每千克茶叶应降价30元或80.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知一个二次函数图象上部分点的横坐标x,纵坐标y的对应值如表所示:

x

2

1

0

1

2

3

4

y

0

p

m

3

q

0

1)求这个二次函数的表达式;

2)表格中字母m  ;(直接写出答案)

3)在给定的直角坐标系中,画出这个二次函数的图象;

4)以上二次函数的图象与x轴围成的封闭区域内(不包括边界),横、纵坐标都是整数的点共有  个.(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点, AD与过点C的直线互相垂直,垂足为点DAD交⊙O于点EAC平分∠DAB,连接CECB

1)求证:CD是⊙O的切线;

2)若ACCE,求⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yax2x+c经过A(20)B(02)两点,动点PQ同时从原点出发均以1个单位/秒的速度运动,动点P沿x轴正方向运动,动点Q沿y轴正方向运动,连接PQ,设运动时间为t

(1)求抛物线的解析式;

(2)BQAP时,求t的值;

(3)随着点PQ的运动,抛物线上是否存在点M,使△MPQ为等边三角形?若存在,请求出t的值及相应点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的对角线ACBD交于点O,分别过点CDCFBDDFAC,连接BFAC于点E

1)求证:FCE≌△BOE

2)当ADC满足什么条件时,四边形OCFD为菱形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点CFD的延长线上,点BED上,ABCF,∠F=∠ACB90°,∠E45°,∠A60°,AC10,则CD的长度是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形、等腰的顶点在对角线(不重合)交于延长线与交于点,连接.

(1)求证:.

(2)求证:

(3),求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面直角坐标系xOy中的点Pab),若点P′的坐标为(a+kbka+b)(其中k为常数,且k≠0),则称点P′为点P“k属派生点

如:P14)的“2属派生点为P′1+2×42×1+4),即P′96);

1)点P-13)的“2属派生点”P′的坐标为______

2)若点P“3属派生点”P′的坐标为(-13),则点P的坐标为______

3)若点Px轴的正半轴上,点P“k属派生点为点P′,线段PP′的长度等于线段OP的长度,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,联结,如果,那么______.

查看答案和解析>>

同步练习册答案