【题目】阅读理解:
我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.
例如:角的平分线是到角的两边距离相等的点的轨迹.
问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM交EF于点P,那么动点P为线段AM中点.
理由:∵线段EF为△ABC的中位线,∴EF∥BC,
由平行线分线段成比例得:动点P为线段AM中点.
由此你得到动点P的运动轨迹是: .
知识应用:
如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长.
拓展提高:
如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△APC和等边△PBD,连结AD、BC,交点为Q.
(1)求∠AQB的度数;
(2)若AB=6,求动点Q运动轨迹的长.
【答案】阅读理解:EF;知识应用:4;拓展提高:(1)∠AQB=120°,(2)动点Q运动轨迹的长π.
【解析】
试题分析:阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′,△GQ′E≌△NQ′F,推出Q、Q′重合即可解决问题.拓展提高:如图2中,(1)只要证明△APD≌△CPB,推出∠DQG=∠BPG=60°结论解决问题.(2)由(1)可知点P的运动轨迹是,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则∠M=60°,作OH⊥AB于H,则AH=BH=3,OH=,OB=2,利用弧长公式即可解决.
试题解析:阅读理解:根据轨迹的定义可知,动点P的运动轨迹是线段EF.
知识应用:如图1中,作△ABC的中位线MN,作EG∥AC交NM的延长线于G,EF与MN交于点Q′
∵△ABC是等边三角形,MN是中位线,
∴AM=BM=AN=CN,
∵AF=BE,
∴EM=FN,
∵MN∥BC,
∴∠AMN=∠B=∠GME=60°,
∵∠A=∠GEM=60°,
∴△GEM是等边三角形,
∴EM=EG=FN,
在△GQ′E和△NQ′F中,
,
∴△GQ′E≌△NQ′F,
∴EQ′=FQ′,
∵EQ=QF,
′点Q、Q′重合,
∴点Q在线段MN上,
∴段EF中点Q的运动轨迹是线段MN,
MN=BC=×8=4.
∴线段EF中点Q的运动轨迹的长为4.
拓展提高:如图2中,
(1)∵△APC,△PBD都是等边三角形,
∴AP=PC,PD=PB,∠APC=∠DPB=60°,
∴∠APD=∠CPB,
在△APD和△CPB中,
,
∴△APD≌△CPB,
∴∠ADP=∠CBP,设BC与PD交于点G,
∵∠QGD=∠PGB,
∴∠DQG=∠BPG=60°,
∴∠AQB=180°﹣∠DQG=120°
(2)由(1)可知点P的运动轨迹是,设弧AB所在圆的圆心为O,Z 圆上任意取一点M,连接AM,BM,则∠M=60°,
∴∠AOB=2∠M=120°,作OH⊥AB于H,则AH=BH=3,OH=,OB=2,
∴弧AB的长==π.
∴动点Q运动轨迹的长π.
科目:初中数学 来源: 题型:
【题目】据统计,2015年柳州市工业总产值达4573亿,把4573用科学记数法表示为( )
A.4.573×103
B.45.73×102
C.4.573×104
D.0.4573×104
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小黄同学在参加今年体育中考前进行了针对性训练,最近7次的训练成绩依次为:41,43,43,44,45,45,45,那么这组数据的中位数是( )
A.41
B.43
C.44
D.45
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.
(1)求证:∠BME=∠MAB;
(2)求证:BM2=BEAB;
(3)若BE=,sin∠BAM=,求线段AM的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com