【题目】如图,
(1)如图①,BD、CD是∠ABC和∠ACB的角平分线且相交于点D,若∠A =70°,试求∠BDC的度数,并说明理由。
(2)如图②,BD、CD分别是△ABC外角∠EBC、∠FCB的平分线且相交于点D,若∠A =x°,试用x表示∠BDC的度数,并说明理由。
(3)如图③,BD、CD分别是∠ABC和△ACB外角∠ACE的平分线且相交于点D,试找出∠A与∠BDC之间的数量关系,并说明理由。
【答案】(1)∠BDC=125°,理由见解析;(2)∠BDC=90°x°,理由见解析;(3)∠BDC=∠A,理由见解析.
【解析】
(1)先根据三角形内角和定理求出∠ABC+∠ACB=110°,再根据角平分线的性质和三角形内角和定理求解即可;
(2)先根据外角平分线的性质求出∠CBD=(∠A+∠ACB),∠BCD=(∠A+∠ABC),再由三角形内角和定理解答即可;
(3)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,再根据角平分线的定义可得∠DBC=∠ABC,∠DCE=∠ACE,然后整理可得∠BDC=∠A.
解:(1)∠BDC=125°,
理由:∵BD、CD是∠ABC和∠ACB的角平分线,
∴∠DBC=∠ABC,∠DCB=∠ACB,
∵∠ABC+∠ACB=180°∠A=110°,
∴∠BDC=180°∠DBC∠DCB=180°(∠ABC+∠ACB)=180°55°=125°;
(2)∠BDC=90°x°;
理由:∵BD、CD分别是△ABC外角∠EBC、∠FCB的平分线,
∴∠CBD=(∠A+∠ACB),∠BCD=(∠A+∠ABC),
∵∠ABC+∠ACB=180°∠A,
∴∠BDC=180°∠CBD∠BCD
=180°(∠A+∠ACB+∠A+∠ABC)
=180°(2∠A+180°∠A)
=90°∠A,
即∠BDC=90°x°;
(3)∠BDC=∠A,
理由:由三角形的外角性质可得,∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,
∵BD、CD分别是∠ABC和△ACB外角∠ACE的平分线,
∴∠DBC=∠ABC,∠DCE=∠ACE,
∴(∠A+∠ABC)=∠D+∠ABC,
∴∠BDC=∠A.
科目:初中数学 来源: 题型:
【题目】下列判定中,正确的个数有( )
①一组对边平行,一组对边相等的四边形是平行四边形;
②对角线互相平分且相等的四边形是矩形;
③对角线互相垂直的四边形是菱形;
④对角线互相垂直平分且相等的四边形是正方形,
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,两车的距离与慢车行驶的时间之间的函数关系如图所示,则快车的速度为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.
(1)求A′到BD的距离;
(2)求A′到地面的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解,回答问题.
我们都知道是无理数,因为无理数是无限不循环小数,因此不可能把的小数部分全部写出来,于是小磊用表示的小数部分,请你根据小磊的思路完成下列问题:
(1)的小数部分是 ;
(2)已知是正整数,是一个无理数,且表示的小数部分.
①的取值范围是 ;
②当是5的倍数时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形ABCD的两条对角线交于点O,且AB∥CD.有下列结论:①△AOB与△COD相似;②△ABD与△ABC相似;③S△COD∶S△AOB=DC∶AB;④S△AOD=S△BOC.其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com