【题目】如图,在△ABC中,AB=AC,⊙O分别切AB于M,BC于N,连接BO、CO,BO=CO.
(1)求证:AC是⊙O的切线;
(2)连接MC,若,求sin∠B的值.
【答案】(1)见解析;(2).
【解析】
(1)连接NO,过点O作OE⊥AC于点E,由 可得∠ABC=∠ACB,结合,证明利用角平分线的性质可得NO=EO,则结论得证;
(2)过点M作MF⊥BC于点F,连结OM,ON,证得BM=BN=BC,设BC=a,CF=b,则MF=b,BF=a-b,BM=a,可得,解方程得b=,可求出答案.
(1)证明:如图1,连接NO,过点O作OE⊥AC于点E,
∵AB=AC,
∴∠ABC=∠ACB,
∵⊙O分别切AB于M,BC于N,
∠ABO=∠CBO,
∴
∵ON⊥BC,OE⊥AC,
∴NO=EO,
∴AC是⊙O的切线;
(2)解:如图2,过点M作MF⊥BC于点F,连结OM,ON,
∵OM=ON,OB=OB,
∴Rt△BOM≌Rt△BON(HL),
∴BM=BN,
∵OB=OC,ON⊥BC,
∴BN=CN=BC,
∴
∵
∴,
∴,
设BC=a,CF=b,则MF=,BF=a﹣b,BM=,
∵
∴,
解得b=或b=a(舍去).
∴
科目:初中数学 来源: 题型:
【题目】如图,等边边长为,点是的内心,,绕点旋转,分别交线段、于、两点,连接,给出下列四个结论:①形状不变;②的面积最小不会小于四边形的面积的四分之一;③四边形的面积始终不变;④周长的最小值为.上述结论中正确的个数是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,,顶点C的坐标为,x反比例函数的图象与菱形对角线AO交于点D,连接BD,当轴时,k的值是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,3个正方形在⊙O直径的同侧,顶点B、C、G、H都在⊙O的直径上,正方形ABCD的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上、顶点F在QG上,正方形PCGQ的顶点P也在⊙O上.若BC=1,GH=2,则CG的长为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为( )
A.y=x2+B.y=x2+
C.y=x2+2D.y=x2+2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),4x+2<kx+b<0的解集为( )
A.x<﹣2B.﹣2<x<﹣1C.x<﹣1D.x>﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小时,则∠AMN+∠ANM的度数是________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,y=ax2+bx-2的图象过A(1,0),B(-2,0),与y轴交于点C.
(1)求抛物线关系式及顶点M的坐标;
(2)若N为线段BM上一点,过N作x轴的垂线,垂足为Q,当N在线段BM上运动(N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t的关系式并求出S的最大值;
(3)在抛物线的对称轴上是否存在点P,使△PAC为直角三角形?若存在,请直接写出所有符合条件P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com