【题目】如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一点P,使PB+PC的值最小,求点P的坐标;
(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
【答案】(1) (2)点P的坐标;(3)M
【解析】
(1)待定系数法即可得到结论;
(2)根据线段垂直平分线上的点到线段两端点的距离相等,可得M在对称轴上,根据两点之间线段最短,可得M点在线段AB上,根据自变量与函数值的对应关系,可得答案;
(3)设M(a,a2-2a-3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴于E,AF⊥x轴于F,于是得到△ABF≌△NME,证得NE=AF=3,ME=BF=3,得到M(4,5)或(-2,5);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,于是得到结论.
(1)由得,
把代入,
得,
,
抛物线的解析式为;
(2)连接AB与对称轴直线x=1的交点即为P点的坐标(对称取最值),
设直线AB的解析式为,
将A(2,-3),B(-1,0)代入,得y=-x-1,
将x=1代入,得x=-2,
所以点P的坐标为(1,-2);
(3)设M()
①以AB为边,则AB∥MN,如图2,
过M作对称轴y于E,AF轴于F,
则
或,
或
∥AM,
如图3,
则N在x轴上,M与C重合,
综上所述,存在以点ABMN为顶点的四边形是平行四边形,
或或
科目:初中数学 来源: 题型:
【题目】如图,⊙P与y轴相切于点C(0,3),与x轴相交于点A(1,0),B(9,0).直线y=kx-3恰好平分⊙P的面积,那么k的值是 ( )
A.
B.
C.
D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.732).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小值为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(-3,0),与y轴交于点B(0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.
(1)求二次函数解析式.
(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.
(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠PA′O=90.求点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】周末,小马和小聪想用所学的数学知识测量图书馆前小河的宽,测量时,他们选择河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.35m,BD=7m.测量示意图如图所示.请根据相关测量信息,求河宽AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图甲是小张同学设计的带图案的花边作品,该作品由形如图乙的矩形图案设计拼接面成(不重叠,无缝隙).图乙中,点E、F、G、H分别为矩形AB、BC、CD、DA的中点,若AB=4,BC=6,则图乙中阴影部分的面积为
_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com