【题目】如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.
(1)求证:CD为⊙O的切线;
(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)
【答案】(1)证明见解析;(2).
【解析】试题分析:(1)首先连接OD,由BC是⊙O的切线,可得∠ABC=90°,又由CD=CB,OB=OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线;
(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由S阴影=S扇形OBD-S△BOD,即可求得答案.
试题解析:(1)连接OD,
∵BC是⊙O的切线,
∴∠ABC=90°,
∵CD=CB,
∴∠CBD=∠CDB,
∵OB=OD,
∴∠OBD=∠ODB,
∴∠ODC=∠ABC=90°,
即OD⊥CD,
∵点D在⊙O上,
∴CD为⊙O的切线;
(2)过点O作OF⊥BD于点F,
在Rt△OBF中,
∵∠ABD=30°,OF=1,
∴∠BOF=60°,OB=2,BF= ,
∵OF⊥BD,
∴BD=2BF=2,∠BOD=2∠BOF=120°,
∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=π﹣.
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿AB向点B以1cm/s的速度移动,同时点Q从点B沿BC向点C以2cm/s的速度移动,当其中一点到达终点时,另一点也随之停止.设P,Q两点移动时间为 x S,ΔPDQ的面积为,
.
(1)当x为何值时,ΔPBQ为等腰三角形?
(2)请求出y与x的函数关系式;
(3)当x为何值时,ΔPDQ面积的为?
(4)直接写出当x为何值时,ΔPDQ是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】【感知】如图①,在Rt△ABC中,∠C=90°,AC=BC,点D、E分别在边AC、BC上,且DE∥AB,易证AD=BE(不需要证明).
【探究】连结图①中的AE,点M、N、P分别为DE、AE、AB的中点,顺次连结M、N、P,其它条件不变,如图②,求证:△MNP是等腰直角三角形.
【应用】将图②中的点D、E分别移动到AC、BC的延长线上,其它条件不变,在连结BD,并取其中点Q,顺次连结M、N、P、Q,如图③,若=,且DE=,则四边形MNPQ的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,半圆O的直径MN=6cm,在△ABC中,∠ACB=90°,∠ABC=30°,BC=6cm,半圆O以1cm/s的速度从左向右运动,在运动过程中,点M、N始终在直线BC上,设运动时间为t(s),当t=0s时,半圆O在△ABC的左侧,OC=4cm.
(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切?
(2)当△ABC的一边所在的直线与半圆O所在圆相切时,如果半圆O与直线MN围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法:(1)三角形具有稳定性;(2)有两边和一个角分别相等的两个三角形全等(3)三角形的外角和是180°(4)全等三角形的面积相等.其中正确的个数是 ( ).
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在钝角三角形ABC中,AB=6cm,AC=12cm,动点D从A点出发到B点止,动点E从C点出发到A点止.点D运动的速度为1cm/秒,点E运动的速度为2cm/秒.如果两点同时运动,那么当以点A、D、E为顶点的三角形与△ABC相似时,运动的时间是( )
A. 4.5秒 B. 3秒 C. 3秒或4.8秒 D. 4.5秒或4.8秒
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com