【题目】如图,C是半圆O上一个动点,AB为半圆的直径,D是弧BC的中点,过点D作半圆O的切线DE交AC的延长线于点E.
(1)求证:AE⊥DE;
(2)①已知CE=2,DE=4,则AB= ;
②连接OC,DC,当∠BAC= 度时,四边形OBDC为菱形.
【答案】(1)见解析;(2)①10;②60.
【解析】
(1)连接OD,利用切线的性质和三角形内角和解答即可;
(2)①连接OC、CD、OD,并过点D作AB边上的垂线,垂足为H,利用全等三角形的判定和性质以及勾股定理解答即可;
②利用菱形的性质解答即可.
(1)连接OD.
∵D是弧BC的中点,∴∠EAD=∠DAB.
∵OA=OD,∴∠DAB=∠ADO.
∵∠DAB+∠B=90°,∠ADO+∠ADE=90°,∴∠EDA=∠B,∴∠EAD+∠EDA=90°,∴∠AED=90°,∴AE⊥DE;
(2)①如图,连接OC、CD、OD,并过点D作AB边上的垂线,垂足为H.
∵∠AED=∠AHD=90°,∠EAD=∠DAH,AD=AD,∴△AED≌△AHD(AAS),∴DE=DH=4.
∵D是的中点,∴CD=BD.
∵∠CED=∠BHD=90°,CD=BD,DE=DH,∴Rt△CED≌Rt△BHD(HL),∴CE=HB=2.
在Rt△OHD中,设OD=r,则OH=r﹣2,由勾股定理得:OD2﹣OH2=DH2,即r2﹣(r﹣2)2=42,解得:r=5,∴AB=2r=10;
②连接OC,DC,当∠BAC=60度时,四边形OBDC为菱形,理由如下:
∵∠BAC=60°,OA=OC,∴△ACO是等边三角形,∴∠DAB=30°,∴∠B=60°,∴OB=OD=DB,∴OC=OB=BD=CD,∴四边形OBDC是菱形.
科目:初中数学 来源: 题型:
【题目】某文具店销售甲、乙两种圆规,当销售5只甲种、1只乙种圆规,可获利润25元,销售6只甲种、3只乙种圆规,可获利润39元.
(1)问该文具店销售甲、乙两种圆规,每只的利润分别是多少元?
(2)在(1)中,文具店共销售甲、乙两种圆规50只,其中甲种圆规为a只,求文具店所获得利润P与a的函数关系式,并求当a≥30时P的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点是线段上一点,,以点为圆心,的长为半径作⊙,过点作的垂线交⊙于,两点,点在线段的延长线上,连接交⊙于点,以,为边作.
(1)求证:是⊙的切线;
(2)若,求四边形与⊙重叠部分的面积;
(3)若,,连接,求和的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠B=60°,AB=2,M为边AB的中点,N为边BC上一动点(不与点B重合),将△BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当△CDE为等腰三角形时,BN的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1所示,抛物线与轴交于点两点,与轴交于点,直线经过点,与抛物线另一个交点为,点是抛物线上的一个动点,过点作轴于点,交直线于点
(1)求抛物线的解析式
(2)当点在直线上方,且是以为腰的等腰三角形时,求的坐标
(3)如图2所示,若点为对称轴右侧抛物线上一点,连接,以为直角顶点,线段为较长直角边,构造两直角边比为的,是否存在点,使点恰好落在直线上?若存在,请直接写出相应点的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴是,且经过A(﹣4,0),C(0,2)两点,直线l:y=kx+t(k≠0)经过A,C.
(1)求抛物线和直线l的解析式;
(2)点P是直线AC上方的抛物线上一个动点,过点P作PD⊥x轴于点D,交AC于点E,过点P作PF⊥AC,垂足为F,当△PEF≌△AED时,求出点P的坐标;
(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,直接写出所有满足条件的Q点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:
①AE=BC
②AF=CF
③BF2=FGFC
④EGAE=BGAB
其中正确的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,,AC、BD交于点O,点P、Q分别是AB、BD上的动点,点P的运动路径是,点Q的运动路径是BD,两点的运动速度相同并且同时结束.若点P的行程为x,的面积为y,则y关于x的函数图象大致为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,点,分别在,上,且,以为圆心,长为半径作圆,经过点,与,分别交于点,.
(1)求证:是的切线;
(2)若,,求的半径;
(3)在(2)的条件下,若的内切圆圆心为,直接写出的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com