【题目】如图,在△ABC中,AB=BC,∠B=90°,点D为线段BC上一个动点(不与点B,C重合),连接AD,将线段AD绕点D顺时针旋转90°得到线段DE,连接EC.
(1)①依题意补全图1;
②求证:∠EDC=∠BAD;
(2)①小方通过观察、实验,提出猜想:在点D运动的过程中,线段CE与BD的数量关系始终不变,用等式表示为 ;
②小方把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:过点E作EF⊥BC,交BC延长线于点F,只需证△ADB≌△DEF.
想法2:在线段AB上取一点F,使得BF=BD,连接DF,只需证△ADF≌△DEC.
想法3:延长AB到F,使得BF=BD,连接DF,CF,只需证四边形DFCE为平行四边形.
……
请你参考上面的想法,帮助小方证明(2)①中的猜想.(一种方法即可)
【答案】(1)①见解析②见解析(2)①猜想:CE=BD②见解析
【解析】
(1)①依题意补全图形即可;②由角的关系即可得出结论;
(2)①由全等三角形和勾股定理可猜想CE=BD;
②想法1:过点E作EF⊥BC,交BC延长线于点F,证明△ADB≌△DEF,得出AB=DF,BD=EF,证出CF=BD=EF,得出△CEF是等腰直角三角形,即可得出结论;
想法2:在线段AB上取一点F,使得BF=BD,连接DF,证出AF=DC,证明△ADF≌△DEC,得出CE=DF=BD即可;
想法3:延长AB到F,使得BF=BD,连接DF,CF,证明△ABD≌△CBF,得出AD=CF,∠BAD=∠BCF,再证明四边形DFCE为平行四边形,即可得出结论.
(1)①补全的图形如图1所示;
②∵∠ADE=∠B=90°,∴∠EDC+∠ADB=∠BAD+∠ADB=90°,
∴∠EDC=∠BAD;
(2)①猜想:CE=BD;
故答案为:CE=BD;
②想法1:
证明:过点E作EF⊥BC,交BC延长线于点F,如图2所示:
∴∠F=90°,∴∠B=∠F,
在△ADB和△DEF中,,
∴△ADB≌△DEF(AAS),∴AB=DF,BD=EF,
∵AB=BC,∴DF=BC,即DC+CF=BD+DC,
∴CF=BD=EF,∴△CEF是等腰直角三角形,
∴CE=CF=BD;
想法2:
证明:在线段AB上取一点F,使得BF=BD,连接DF,如图3所示:
∵∠B=90°,AB=BC,
∴DF=BD,
∵AB=BC,BF=BD,
∴AB﹣BF=BC﹣BD,
即AF=DC,
在△ADF和△DEC中,
,
∴△ADF≌△DEC(SAS),
∴CE=DF=BD;
想法3:
证明:延长AB到F,使得BF=BD,连接DF,CF,如图4所示:
∵∠B=90°,∴DF=BD,
在Rt△ABD和Rt△CBF中,
,
∴△ABD≌△CBF(SAS),
∴AD=CF,∠BAD=∠BCF,
∵AD=DE,∴DE=CF.
∵∠EDC=∠BAD,∴∠EDC=∠BCF,
∴DE∥CF,
∴四边形DFCE为平行四边形,
∴CE=DF=BD.
科目:初中数学 来源: 题型:
【题目】如图,,,,一个以点为顶点的角绕点旋转,角的两边与、交于点、,与、的延长线交于点、,连接.
(1)在旋转的过程中,当时,如图1.求证:;
(2)在旋转的过程中,当时,如图2,如果,,用等式表示线段、之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】反比例函数y=的图象如图所示,以下结论:①常数m<﹣2;②若A(﹣1,h),B(2,k)在图象上,则h<k;③y随x的增大而减小;④若P(x,y)在图象上,则P'(﹣x,﹣y)也在图象上.其中正确的是( )
A. ①②B. ③④C. ②③D. ②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的顶点的坐标分别为A(2,2),B(1,0),C(3,1).
(1)画出△ABC关于x轴对称的△A1BC1,写出点C1的坐标为 ;
(2)画出△ABC绕原点O逆时针旋转90°的△A2B1C2,写出点C2的坐标为 ;
(3)在(1),(2)的基础上,图中的△A1BC1、△A2B1C2关于点 中心对称;
(4)若以点D、A、C、B为顶点的四边形为菱形,直接写出点D的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知反比例函数(常数,).
(1)若点在这个函数的图象上,求的值;
(2)若在这个函数图象的每一个分支上,随的增大而增大,求的取值范围;
(3)若,试判断点是否在这个函数的图象上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是“用三角板画圆的切线”的画图过程.
如图1,已知圆上一点A,画过A点的圆的切线.
画法:(1)如图2,将三角板的直角顶点放在圆上任一点C(与点A不重合)处,使其一直角边经过点A,另一条直角边与圆交于B点,连接AB;
(2)如图3,将三角板的直角顶点与点A重合,使一条直角边经过点B,画出另一条直角边所在的直线AD.
所以直线AD就是过点A的圆的切线.
请回答:该画图的依据是_______________________________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解市民对全市创文工作的满意程度,某中学数学兴趣小组在全市甲、乙两个区内进行了调查统计,将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.
请结合图中信息,解决下列问题:
(1)求此次调查中接受调查的人数.
(2)求此次调查中结果为非常满意的人数.
(3)兴趣小组准备从调查结果为不满意的4位市民中随机选择2位进行回访,已知4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《中学生体质健康标准》规定学生体质健康等级标准为:90分及以上为优秀;80分~89分为良好;60分~79分为及格;59分及以下为不及格. 某校从九年级学生中随机抽取了的学生进行了体质测试,得分情况如下图.
(1)在抽取的学生中不及格人数所占的百分比是 ,它的圆心角度数为 度.
(2)小明按以下方法计算出抽取的学生平均得分是:. 根据所学的统计知识判断小明的计算是否正确,若不正确,请计算正确结果.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com