精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,∠A60°AD8FAB的中点.过点FFE⊥AD,垂足为E.△AEF沿点A到点B的方向平移,得到△A′E′F′.PP′分别是EFE′F′的中点,当点A′与点B重合时,四边形PP′F′F的面积为(   )

A. 8B. 4C. 12D. 88

【答案】B

【解析】

过点PPMAF于点M,首先证明四边形PP′F′F是平行四边形,求出PM即可解决问题.

解:过点PPMAF于点M

由题意PF=P′F′PFP′F′
∴四边形PP′F′F是平行四边形,
∵四边形ABCD是菱形,∠A=60°

由平移性质可得AF=BF′,所以FF′=AB=8

∵∠A60°AD8FAB的中点,AB=8FEAD

AF=AB=4,∠AFE=30°AE=AF=2,由勾股定理得:EF=2

PEF的中点,∴PF=EF= ,

又∵∠PFM=30°,∴PM=PF=,

S平行四边形PP′F′F= F′F×PM=8×=4.

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图(1),AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.

(1)求证:∠ACD=∠B;

(2)如图(2),∠BDC的平分线分别交AC,BC于点E,F,求∠CEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】,则下列不等式中不一定成立的是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,C的半径为r,P是与圆心C不重合的点,点P关于C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于C的反称点,如图为点P及其关于C的反称点P′的示意图.

特别地,当点P′与圆心C重合时,规定CP′=0.

(1)当O的半径为1时.

分别判断点M(2,1),N(0),T1 )关于O的反称点是否存在?若存在,求其坐标;

点P在直线y=﹣x+2上,若点P关于O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;

2C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于C的反称点P′在C的内部,求圆心C的横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC和△DEF是两个边长都为8cm的等边三角形,且 BDCF都在同一条直线上,连接ADCE

1)求证:四边形ADEC是平行四边形

2)若BD=3cm, ABC沿着BF的方向以每秒1cm的速度运动,设△ABC运动时间为t

①当t等于多少秒时,四边形ADEC为菱形;

②点B运动过程中,四边形ADEC有可能是矩形吗?若可能,请画出图形,并求出t的值;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是计算机中的一种益智小游戏扫雷的画面,在一个的小方格的正方形 雷区中,随机埋藏着颗地雷,每个小方格内最多只能埋藏颗地雷。小红在游戏开始时首先随机的点击一个方格,该方格中出现了数字,其意义表示该格的外围区域(图中阴影部分,记为区域)有颗地雷;接着小红又点击了左上角第一个方格,出现了数字,其外围区域(图中阴影)记为区域;区域与区域以及出现数字两格以外的部分记为区域。请分别计算出区、区、区点中地雷的概率,那么她应点击中的哪个区域?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙少3km;④甲比乙先到达终点.其中正确的有(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知平行四边形ABCD中,GBC中点,点EAD边上,且∠1=2

(1)求证:EAD中点;

(2)FCD延长线上一点,连接BF,且满足∠3=2,求证:CD=BF+DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级学生全部参加初二生物地理会考,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为ABCD四等,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题

1)抽取了______名学生成绩;(2)请把条形统计图补充完整;

3)扇形统计图中等级D所在的扇形的圆心角度数是______

4)若ABC代表合格,该校初二年级有300名学生,求全年级生物合格的学生共约多少人

查看答案和解析>>

同步练习册答案