精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,菱形ABCD的顶点A(30),顶点By轴正半轴上,顶点Dx轴负半轴上,若抛物线y=x25x+c经过点BC,则菱形ABCD的面积为(

A.15B.20C.25D.30

【答案】B

【解析】

根据抛物线的解析式结合抛物线过点BC,即可得出点C的横坐标,由菱形的性质可得出AD=AB=BC=5,再根据勾股定理可求出OB的长度,套用平行四边形的面积公式即可得出菱形ABCD的面积.

解:抛物线的对称轴为

∵抛物线y=-x2-5x+c经过点BC,且点By轴上,BCx轴,
∴点C的横坐标为-5
∵四边形ABCD为菱形,
AB=BC=AD=5
∴点D的坐标为(-20),OA=3
RtABC中,AB=5OA=3

OB=

S菱形ABCD=ADOB=5×4=20
故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,抛物线y=﹣x2+2x+3x轴于点AB,其中点A在点B的左边,交y轴于点C,点P为抛物线上位于x轴上方的一点.

1)求ABC三点的坐标;

2)若PAB的面积为4,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题情境)

如图1,四边形ABCD是正方形,MBC边上的一点,ECD边的中点,AE平分∠DAM

(探究展示)

(1)证明:AM=AD+MC

(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.

(拓展延伸)

(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)(2)中的结论是否成立?请分别作出判断,不需要证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两个半径相等的直角扇形的圆心分别在对方的圆弧上,半径AECF交于点G,半径BECD交于点H,且点C是弧AB的中点,若扇形的半径为,则图中阴影部分的面积等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD.

1)作∠B的平分线交ADE点。(用尺规作图法,保留作图痕迹,不要求写作法)

2)若ABCD的周长为10CD=2,求DE的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有红、黄两个盒子,红盒子中藏有三张分别标有数字1的卡片,黄盒子中藏有三张分别标有数字132的卡片,卡片外形相同.现甲从红盒子中取出一张卡片,乙从黄盒子中取出一张卡片,并将它们的数字分别记为ab

(1)请你用树形图或列表法列出所有可能的结果.

(2)现制定这样一个游戏规则:若所选出的ab能使得二次函数y=ax2+bx+1的图像与x轴有两个不同的交点,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点的坐标分别为,抛物线的顶点在线段上运动,与轴交于两点(的左侧),若点的横坐标的最小值为0,则点的横坐标最大值为(

A.6B.7C.8D.9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC在坐标平面内,三个顶点的坐标分别为A03),B34),C22).(正方形网格中,每个小正方形的边长是1个单位长度).

1)作出ABC绕点A顺时针方向旋转90°后得到的A1B1C1,并直接写出C1点的坐标;

2)作出ABC关于原点O成中心对称的A2B2C2,并直接写出B2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,AEBCAFCD,垂足分别为点EF,且BEDF

1)如图1,求证:ABCD是菱形;

2)如图2,连接BD,交AE于点G,交AF于点H,连接EFFG,若∠CEF30°,在不添加任何字母及辅助线的情况下,请直接写出图中面积是BEG面积2倍的所有三角形.

查看答案和解析>>

同步练习册答案