精英家教网 > 初中数学 > 题目详情

【题目】如图,AB⊙O的直径,弦CD⊥AB,垂足为点ECF⊥AF,且CF=CE

1)求证:CF⊙O的切线;

2)若sin∠BAC=,求的值.

【答案】1)证明:连接OC

∵CE⊥ABCF⊥AFCE=CF

∴AC平分∠BAF,即∠BAF=2∠BAC

∵∠BOC=2∠BAC∴∠BOC=∠BAF

∴OC∥AF∴CF⊥OC∴CF⊙O的切线。

2)解:∵AB⊙O的直径,CD⊥AB

∴CE=ED∠ACB=∠BEC=90°

∴SCBD=2SCEB∠BAC=∠BCE∴△ABC∽△CBE

【解析】

1)首先连接OC,由CD⊥ABCF⊥AFCF=CE,即可判定AC平分∠BAF,由圆周角定理即可得∠BOC=2∠BAC,则可证得∠BOC=∠BAF,即可判定OC∥AF,即可证得CF⊙O的切线。

2)由垂径定理可得CE=DE,即可得SCBD=2SCEB,由△ABC∽△CBE,根据相似三角形的面积比等于相似比的平方,易求得△CBE△ABC的面积比,从而可求得的值。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.

(1) 求一次函数的表达式;

(2) 根据图象写出kx+b-<0x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售某种品牌的手机,每部进货价为2500.市场调研表明:当销售价为2900元时,平均每天能售出8部;而当销售价每降低50元时,平均每天就能多售出4.

(1)当售价为2800元时,这种手机平均每天的销售利润达到多少元?

(2)若设每部手机降低x,每天的销售利润为y,试写出yx之间的函数关系式.

(3)商场要想获得最大利润,每部手机的售价应订为为多少元?此时的最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一个截面的边缘为抛物线的拱桥桥洞,桥洞壁离水面AB的最大高度是2米,水面宽度AB为4米.把截面图形放在如图所示的平面直角坐标系中.

(1)求这条抛物线对应的函数表达式.

(2)若水面下降1米,求水面宽度增加了多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017浙江省湖州市)如图,已知∠AOB=30°,在射线OA上取点O1,以O1为圆心的圆与OB相切;在射线O1A上取点O2,以O2为圆心,O2O1为半径的圆与OB相切;在射线O2A上取点O3,以O3为圆心,O3O2为半径的圆与OB相切;;在射线O9A上取点O10,以O10为圆心,O10O9为半径的圆与OB相切.若⊙O1的半径为1,则⊙O10的半径长是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形 中, ,点 为线段 上的动点,将 沿 折叠,使点 落在矩形内点 处.下列结论正确的是________. (写出所有正确结论的序号)

①当 为线段 中点时, ;②当 为线段 中点时,

③当 三点共线时, ;④当 三点共线时, .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c(a,b,c是常数,a0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);当﹣1<x<3时,y0,其中正确的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是

A. BC=AC B. CFBF C. BD=DF D. AC=BF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,EAB中点,EF∥DCBC于点F,EF的长.

查看答案和解析>>

同步练习册答案