【题目】在中,对角线AC、BD交于点O,且分别平分∠DAB,∠ABC.
(1)请求出∠AOB的度数,写出AD、AB、BC之间的等量关系,并给予证明.
(2)设点P为对角线AC上一点,PB=5,若AD+BC=16,四边形ABCD的面积为,求AP的长.
【答案】(1),;证明见解析;(2)的长为.
【解析】
(1)根据平行四边形的性质可得,由AC、BD分别平分∠DAB、∠ABC可得,根据三角形内角和定理即可得∠AOB的度数;根据平行线的性质可得,即可证明,可得AB=BC,根据平行四边形的性质可得;
(2)根据AD+BC=16可得=8,当∠ABC>90°时,过点作,根据四边形ABCD的面积可得DE的长,利用勾股定理可求出AE的长,进而可证明△DAB是等边三角形,根据含30°角的直角三角形的性质可得OA、OB的长,根据PB=5,利用勾股定理可得OP的长,即可求出AP的长;当∠ABC<90°时,可得OB>5,不符合题意,综上即可得答案.
(1)∵四边形ABCD为平行四边形,
∴,
∴,
∵AC、BD分别平分∠DAB、∠ABC,
∴,
∴,
之间的等量关系为,
∵,
∴,
∵AC平分,
,
四边形为平行四边形,
(2)∵,
∴,
①如图,当时,
过点作,
∵四边形的面积为,
,
,
点为的中点,,
为等边三角形,
∵∠AOB=90°,
,
∵,
或.
②如图,当时,
,AE=4,
∴BE=12,
∴BD==,
∴,
所以这样的点不存在,故排除.
综上所述:的长为.
科目:初中数学 来源: 题型:
【题目】某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.
(1)求证:AM=AN;
(2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
已知,在Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕点D旋转,它的两边分别交AC,CB(或它们的延长线)于点E,F.
(1)(问题发现)
如图1,当∠EDF绕点D旋转到DE⊥AC于点E时(如图1),
①证明:△ADE≌△BDF;
②猜想:S△DEF+S△CEF= S△ABC.
(2)(类比探究)
如图2,当∠EDF绕点D旋转到DE与AC不垂直时,且点E在线段AC上,试判断S△DEF+S△CEF与S△ABC的关系,并给予证明.
(3)(拓展延伸)
如图3,当点E在线段AC的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的关系?(写出你的猜想,不需证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,∠ADC=70°.
(1)求∠EDC的度数;
(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);
(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示);若不改变,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
(Ⅰ)若AB=4,求 的长;
(Ⅱ)若 = ,AD=AP,求证:PD是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.
(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;
(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,
(1)求证:DE=DB;
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com