【题目】下面从认知、延伸、应用三个层面来研究一种几何模型.
(1)如图,已知点E是线段BC上一点,若∠AED=∠B=∠C.求证 △ABE∽△ECD.
(2)如图,已知点E、F是线段BC上两点,AE与DF交于点H,若∠AHD=∠B=∠C.
求证:△ABE∽△FCD.
(3)如图,⊙O是等边△ABC的外接圆,点D是上一点,连接BD并延长交AC的延长线于点E;连接CD并延长交AB的延长线于点F. 猜想BF、BC、CE三线段的关系,并说明理由.
【答案】(1)见解析;(2)见解析;(3)BC2=BF×CE.
【解析】
(1)利用△ABE的外角关系证出∠A=∠DEC,又∠B=∠C,从而△ABE∽△ECD;
(2)利用△ABE和△EFH的外角关系证出∠A=∠DFC,又∠B=∠C,从而△ABE∽△FCD;
(3)由圆的内接四边形和等边三角形的性质可知∠BDC=∠CBF=∠ECB=120°,由△CDE的外角关系可得∠E=∠DCB,从而可证△FBC∽△BCE,由相似三角形对应边成比例得出=,从而得到BC2=BF×CE.
证明:(1)∵∠AEC是△ABE的外角,
∴∠AEC=∠A+∠B,
又∵∠AEC=∠AED+∠DEC,
∴∠A+∠B=∠AED+∠DEC,
∵∠B=∠AED,
∴∠A=∠DEC,
又∵∠B=∠C,
∴△ABE∽△ECD;
(2)∵∠AEC是△ABE的外角,
∴∠AEC=∠A+∠B,
∵∠HEC是△EFH的外角,
∴∠AEC=∠HFE+∠FHE,
∴∠A+∠B=∠HFE+∠FHE,
∵∠B=∠AHD,∠AHD=∠FHE,∴∠B=∠FHE,
∴∠A=∠HFE,
∵∠B=∠C,
∴△ABE∽△FCD;
(3)∵四边形ABDC是⊙O的内接四边形,
∴∠BDC+∠A=180°,
∵△ABC是等边三角形,
∴∠A=∠ACB=∠ABC=60°,
∴∠BDC=∠CBF=∠ECB=120°,
∵∠FDE是△CDE的外角,
∴∠FDE=∠E+∠DCE=120°,
∵∠DCB+∠DCE=120°,
∴∠E=∠DCB,
∴△FBC∽△BCE,
∴=,
∴BC2=BF×CE.
故答案为:(1)见解析;(2)见解析;(3)BC2=BF×CE.
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为θ(0°<θ<180°),得到△A'B'C.
(1)如图1,当AB∥CB'时,设A'B'与CB相交于点D,求证:△A'CD是等边三角形.
(2)若E为AC的中点,P为A'B'的中点,则EP的最大值是多少,这时旋转角θ为多少度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是反比例函数在第二象限内图象上一点,点B是反比例函数在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,则△AOB的面积是( )
A. 2 B. 2.5 C. 3 D. 3.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数 y=x﹣3 与反比例函数 y=的图象相交于点 A(4,n),与 x 轴相交于点 B.
(1)求 n 与 k 的值;
(2)以 AB 为边作菱形 ABCD,使点 C 在 x 轴正半轴上,点 D 在第一象限,求点 D 的坐标;
(3)观察反比例函数y=的图象,当 y>﹣2 时,请直接写出自变量 x 的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴为直线x=﹣1,下列结论正确的有_____(填序号).
①若图象过点(﹣3,y1)、(2,y2),则y1<y2;
②ac<0;
③2a﹣b=0;
④b2﹣4ac<0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A(m,6),B(n,1)在反比例函数y=的图象上,AD⊥x轴于点D,BC⊥x轴于点C,点E在CD上,CD=5,△ABE的面积为10,则点E的坐标是( )
A. (3,0) B. (4,0) C. (5,0) D. (6,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,△ABC的位置如图所示.(每个小方格都是边长为1个单位长度的正方形)
(1)画出△ABC关于原点对称的△A'B'C';
(2)将△A'B'C'绕点C'顺时针旋转90°,画出旋转后得到的△A″B″C″,并直接写出此过程中线段C'A'扫过图形的面积.(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,E是BC边上一点.且BE=EC,BD,AE相交于点F.
(1)求△BEF的周长与△AFD的周长之比;
(2)若△BEF的面积S△BEF=6cm2.求△AFD的面积S△AFD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线AB与直线BC相交于点,直线AB与轴相交于点,直线BC与轴、轴分别相交于点、点C.
(1)求直线AB的解析式;
(2)过点A作BC的平行线交轴于点E,求点E的坐标;
(3)在(2)的条件下,点P是直线AB上一动点且在轴的上方,如果以点D、E、P、Q为顶点的平行四边形的面积等于△ABC,请求出点P的坐标,并直接写出点Q的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com